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Abstract 

Current interactive user interface construction tools are often more of a hindrance than 
a benefit during the early stages of interface design. These tools are hard to use and 
they encourage designers and evaluators to focus on the wrong issues, such as color, 
fonts, and alignment, at this early stage. Most designers prefer instead to sketch early 
interface ideas on paper. However, designing on paper also has many drawbacks. 
Paper-based designs are hard to edit and cannot easily be tested with users. This disser- 
tation describes the design, implementation, and evaluation of an interactive sketching 
tool called SILK that overcomes these problems and combines many of the benefits of 
paper-based sketching with current electronic tools. 

SILK allows designers to quickly sketch an interface using an electronic pad and 
stylus. SILK preserves the important properties of pencil and paper: a rough drawing 
can be produced quickly and the medium is flexible. However, unlike a paper sketch, 
this electronic sketch is interactive and can easily be annotated and modified using 
editing gestures. 

SILK recognizes user interface widgets and other interface elements as they are 
drawn and gives the designer feedback so that these inferences can be changed. Recog- 
nized interface elements have built-in behaviors and thus these elements can be exer- 
cised in their sketchy state. For example, the "elevator" in a sketched scrollbar can be 
dragged up and down. Unfortunately, the behavior of individual widgets is insufficient 
to test a working interface. SILK's electronic storyboards allow the illustration of the 
dynamic behavior between interface elements, such as a dialog box appearing when a 
button is pressed. A designer creates a storyboard by first copying sketched screens to 
the storyboard window and then drawing transition arrows on the screens. The arrows 
specify which objects cause transitions to which screens when the end-user clicks on 
the objects. When the designer is satisfied with this early prototype, the system can 
transform the sketch into an operational interface using real widgets in a specified 
look-and-feel. 

An evaluation of SILK, using professional and student designers, showed that it 
was an effective tool for both early creative design and for communicating the result- 
ing design ideas to other members of an engineering team. By supporting the early 
phases of the interface design life cycle, electronic sketching can both ease the proto- 
typing of user interfaces and improve the interfaces that are eventually produced. 
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CHAPTER 1 

Introduction 

When professional designers first start thinking about a visual interface, they often 
sketch rough pictures of the screen layouts. In fact, everyone who designs user inter- 
faces seems to do this, whether or not they have a graphic design background. These 
sketches are used to explore the overall layout and structure of interface components, 
rather than to refine the detailed look-and-feel. 

In addition to sketching the various screens, designers often build up storyboards 
from these sketches. By numbering the screens, drawing arrows on them, and attach- 
ing annotations, a designer can describe the major transitions that occur between 
screens when a user manipulates the interface. Figure 1-1 illustrates a simple sketched 
storyboard. 

--(D_ 

Figure 1-1. This hand-drawn storyboard illustrates that the rectangle should rotate when the 
button is pressed. 



CHAPTER 1. INTRODUCTION 

Designers need interactive tools that give them the freedom to sketch rough 
design ideas quickly, the ability to test the designs by interacting with them, and the 
flexibility to fill in the design details as choices are made [Wagner 1990]. Because cur- 
rent interactive tools do not offer this support, designers are still more comfortable 
sketching than using traditional palette-based interface construction tools in the early 
stages of design. Additionally, research indicates that designers should not use current 
interactive tools in the early stages of development since this places too much focus on 
design details like color and alignment rather than on the major interface design issues, 
such as structure and behavior [Wong 1992]. 

This dissertation investigates the design, implementation, and evaluation of a 
novel interface design tool, SILK, that is intended to combine the advantages of paper- 
based sketching and storyboarding with the features afforded by computer-based con- 
struction tools. This chapter first discusses the goals of the research and then motivates 
the creation of such a tool by describing the advantages and disadvantages of existing 
design tools and methodologies. This is followed by an overview of SILK and an 
extended example that highlights SILK's user interface. The chapter closes with a dis- 
cussion of the contributions of the research and an outline of the rest of this document. 

1.1       Research Goals 
The primary goal of this work is to demonstrate that electronic sketches and story- 
boards can be successfully used to prototype user interfaces in the early stages of 
design. SILK [Landay 1995a], which stands for Sketching Interfaces Like Krazy, 
allows designers to quickly sketch an interface using an electronic stylus. SILK retains 
the sketchy look of the components. This rough representation keeps designers and 
evaluators from focussing on unimportant details at this stage of design, and when 
combined with the interactivity provided by storyboards, encourages productive 
design discussions with other members of the design team. Figure 1-2 illustrates a 
simple sketched interface screen with a window containing a rectangle and a button 
below the window1. 

The terms user and designer are used interchangeably in this document to refer 
to the user of SILK. The term end-user is used to refer to the user of the interface that 
is prototyped with SILK. 

Unlike paper sketches, electronic sketches allow the designer or test subjects to 
try out the design before it becomes a finished interface. This is because SILK 
sketches include interactive behavior, both for recognized interface widgets and for 

1. All interface sketches in this document were created using SILK unless noted otherwise in the figure caption. 
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Figure 1-2. A simple sketched interface screen containing a window, a rectangle, and a button. 

transitions among various screens. As a consequence, another goal of the research is to 
make it easy to illustrate this behavior without requiring programming or complicated 
dialogs. Figure 1-3 illustrates a storyboard that adds behavior to the interface illus- 
trated in Figure 1-2. This storyboard is a SILK representation of the hand-drawn story- 
board shown in Figure 1-1. At each stage of the design process the interface can be 
tested by manipulating it with the mouse, keyboard, or stylus. 

Traditional user interface construction tools are often difficult to use and inter- 
fere with the designer's creativity. Therefore, another goal is to make SILK's user 
interface as unintrusive and flexible as possible. In addition to providing the ability to 
rapidly capture sketched user interface ideas, SILK allows a designer to edit the sketch 

^sssss 
I SILK Storyboard* ■•M 

Edit Sketch; 

Figure 1-3. SILK storyboard that illustrates rotating the rectangle when the button is pressed. 
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using simple gestures. Furthermore, SELK's design memory mechanisms allow 
designers to review annotations made to a design over the course of a project and to 
reuse portions of old designs. Thus, unlike paper sketches, SILK sketches can evolve 
without forcing the designer to continually start over with a blank slate. 

Most existing tools only support a small portion of the design process (see 
Figure 1-4). Therefore, a final goal of this research is to concentrate on the early stages 
of design, while allowing an easy transition to the tools that will be used in the later 
stages. SILK's widget transformation process turns interface sketches into real user 
interfaces for actual systems without re-implementation or programming. Thus, SILK 
can support the entire design cycle — from developing the initial creative design to 
developing the prototype, testing the prototype, and implementing the final interface. 
To some extent SILK will be able to replace paper sketches and prototyping tools (e.g., 
HyperCard, Director, and Visual Basic) for designing, constructing, and testing user 
interfaces in the early stages of user interface design (see Figure 1-4). 

Development 
Stage Brainstorming Prototyping Programming/Testing 

Tool 
V \              paper 
^^^     sketches 

SILK 

HyperCard        V 
or Director ^^^ 

J   /user interface             J 
V,^/     builders      ^S 

Figure 1-4. SILK can be used during all stages of user interface design, construction, and testing. 

1.2      Drawbacks of Current Design Methods 
User interface designers have become key members of software development groups. 
To get a better understanding of their design process, I visited some of them at their 
workplaces. In particular, I visited US West's Advanced Research Lab and Apple 
Computer's Advanced Technology Group. I also studied the design literature, spoke 
with designers at conferences, and took an electronic survey of designers (see 
Chapter 2, "Informal Survey of Designers"). Using insights from these different 
sources, I have drawn some conclusions about the problems with current design meth- 
ods. Currently, designers use some combination of low-fidelity techniques, prototyp- 
ing tools, and user interface builders. I describe these in turn. 

Designers often use sketching and other low-fidelity techniques [Rettig 1994] to 
generate early interface designs. Low-fidelity techniques involve creating interface 
mock-ups using sketches, scissors, glue, and post-it notes. Designers use these mock- 
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ups to quickly try out design ideas. Later they may use prototyping tools or user inter- 
face builders, or they may hand off the design to a programmer. 

Prototyping tools, such as Macromedia's Director [Macromedia 1994], Apple's 
HyperCard [Apple 1993], and Microsoft's Visual Basic [Microsoft 1993], allow non- 
programmers to write simple application mock-ups in a fraction of the time required 
using traditional programming techniques. Prototyping tools allow designers to 
quickly illustrate examples of what the screens in a program will look like. These tools 
allow designers to create applications that have varying degrees of interactive behav- 
ior, but due to poor performance are rarely used to produce significant commercial 
applications. 

Unlike user interface prototyping tools, interface builders are generally used for 
producing the final application. These tools, such as the NeXT Interface Builder 
[NeXT 1991] and UIM/X [Software 1990], have become invaluable in the creation of 
both commercial and in-house computer applications. They allow the designer to cre- 
ate the look of a user interface by simply dragging widgets from a palette and position- 
ing them on the screen. Unlike prototyping tools, user interface builders then generate 
code or specifications that can be linked with the application code written in a conven- 
tional programming language. This facilitates the creation of the widget-based parts of 
the application user interface with little low-level programming, which allows the 
engineering team to concentrate on the application-specific portions of the product. 
Unfortunately, prototyping tools, user interface builders, and low-fidelity techniques 
have several drawbacks when used in the early stages of interface design. 

1.2.1       Interface Tools Constrain Design 

Traditional user interface tools force designers to bridge the gap between how they 
think about a design and the detailed specification they must create to allow the tool to 
reflect a specialization of that design. Much of the design [Boyarski 1994] and prob- 
lem-solving [Polya 1973] literature discusses drawing rough sketches of design ideas 
and solutions, yet most user interface tools require the designer to specify more of the 
design than a rough sketch allows. 

For example, the designer may decide that the interface requires a palette of 
tools, but she is not yet sure which tools to specify. Using SILK, a thumbnail sketch 
can easily be drawn with some rough illustrations to represent the tools (see Figure 1- 
5). This is in contrast to commercial interface tools that require or at best encourage 
the designer to specify unimportant details such as the size, color, finished icons, and 
location of the palette. This over-specification can be tedious and may also lead to a 
loss of spontaneity during the design process. A study using graphic designers found 
that "the finished appearance of screen-produced drafts shifts [the designer's] attention 
from fundamental structural issues" [Black 1990]. Thus, the designer may be forced to 
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Figure 1-5. Sketched application screen for a drawing editor. 

either abandon computerized tools until much later in the design process or to change 
design techniques in a way that is not conducive to early creative design. 

One of the important lessons from the interface design literature is the value of 
iterative design; that is, creating a design prototype, evaluating the prototype, and then 
repeating the process several times [Gould 1985]. It is important to iterate quickly in 
the early part of the design process because that is when fundamentally different ideas 
can and should be generated and examined. This is another area in which current tools 
fail during the early design process. The ability to turn out new designs quickly is 
hampered by the requirement for detailed designs. 

For example, Figure 1-5 illustrates a simple sketched interface screen. It has a 
scroll bar and a window for the scrolling data. It also has several buttons at the bottom, 
a palette of tools at the right, and four pulldown menus at the top. In one test using 
SILK, I sketched this screen using a mouse in just 70 seconds (sketched on paper it 
took 53 seconds). The use of a mouse accounts for the increase in time compared with 
using pen and paper. Creating this same interface (see Figure 1-6) with a traditional 
user interface builder, Gilt [Myers 1991], took 329 seconds, which is nearly five times 
longer. In addition, the UI builder time does not include adding representative icons to 
the tool palette due to the excessive time required to design or acquire them. 
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Figure 1-6. The sketched application from Figure 1-5 created with a traditional user interface 
builder (the Gilt tool supplied with Garnet [Myers 1990c]). 

Director, HyperCard, and Visual Basic are three of the most popular prototyping 
tools used by designers. Though useful in the prototyping stages, these tools come up 
short when used either in the early design stages or for producing production-quality 
interfaces. Besides having many of the problems mentioned previously, these tools 
commonly require using a programming language since their built-in behaviors are 
often insufficient for the application-level interactions a designer may wish to illus- 
trate. These full-powered programming languages are inappropriate for most interface 
designers, who often have a background in graphic design or art, not in programming. 
In addition, Director and HyperCard cannot be used for many commercial-quality 
applications due to their poor performance, which usually forces the development 
team to reimplement the user interface with a different tool. 

1.2.2      Paper-based Sketching Lacks Interactivity 

Because of these problems with interactive tools, designers often use paper sketches 
for their early creative brainstorming. Brainstorming is a process that moves quickly 
between fundamentally different design ideas. Sketches allow a designer to quickly 
preserve thoughts and design details before they are forgotten. The disadvantage of 
making these sketches on paper is that they are hard to modify as the design evolves. 
The designer must frequently redraw the common features that the design retains. 
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One way to avoid this repetition is to use translucent layers [Wong 1993; Gross 
1994]. Another solution is to use an erasable whiteboard. Both of these approaches are 
clumsy at best. In order to be effective, translucent layers require forethought on the 
part of the designer in terms of commonality and layout of components. Whiteboards 
make it hard to scale and move compound objects. Neither of these solutions help with 
the next step when a manual translation to a computerized format is required, either 
with a user interface builder or by having programmers create an interface using a low- 
level toolkit. This translation may need to be repeated several times if the design 
changes. 

Another problem with relying too heavily on paper sketches for user interface 
design is the lack of support for design memory [Herbsleb 1993]. Design memory is a 
record of the design process: what was done at each stage and why. Paper sketches 
may be annotated, but a designer cannot easily search these annotations in the future to 
find out why a particular design decision was made. In my visits with designers and in 
the sketches designers sent me (see Section 2.2.3), I have observed that the annotations 
often occupy more space in the sketches than the actual interface design. Practicing 
designers have found that the annotations on design sketches serve as a diary of the 
design process, which are often more valuable to the client than the sketches them- 
selves [Boyarski 1994]. Sketches made on paper are also difficult to store, organize, 
and reuse. 

One of the biggest drawbacks of using paper sketches is the lack of interaction 
possible between the paper-based design and an end-user, which may be one of the 
designers at this stage. In order to actually see what the interaction might be like, a 
designer needs to "play computer" and manipulate several sketches in response to an 
end-user's verbal or gestural actions. This low-fidelity prototyping technique does not 
offer a realistic depiction of how the application will eventually be used. 

1.3      Advantages of Sketching for Design 
Despite many problems with paper-based sketching, the process of sketching has sev- 
eral advantages, especially for preliminary creative design. This section first discusses 
the advantages of sketching and then describes the specific advantages of computer- 
based sketching. 

1.3.1      Advantages of Paper-based Sketching 

Several researchers have explored the advantages of using diagrams in reasoning [Lar- 
kin 1987], but only recently has anyone studied the process of using sketching in the 
design process. Sketching has two important advantages over other design methods: it 
is a way to quickly externalize an idea and it is inherently ambiguous. 
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There is only so much of a design that a designer can keep in her mind at one 
time. Early on in the creative process it is important to put the idea in some tangible 
form - a form that can be seen, thought about, and then changed. At this early stage, it 
is important to generate many different solutions and variations to a design problem in 
a short amount of time. The lack of constraints on paper-based sketching permits a 
"quick and intuitive representation of concepts" [Kolli 1993]. In fact, designers will 
become frustrated if they cannot externalize their mental images, as this externaliza- 
tion is important for restructuring an initial design [Verstijnen 1996]. 

The iterative restructuring of preliminary mental images is a key step in creative 
design. The ability to restructure a design and come up with different alternatives is 
also supported by the ambiguity in sketches. An ambiguous drawing is one that can be 
reinterpreted by the designer with a meaning that is different from the designer's orig- 
inal intention. This ambiguity can result from a lack of detail or the incompleteness of 
the sketch. For example, the sketched widget in Figure 1-7 can be interpreted by the 
designer as either a radio button or a check box, as the designer has left the object to 
the left of the text very rough - it is neither round nor square. In fact, researchers have 
found that ambiguities "may trigger innate recognition search mechanisms that gener- 
ate a stream of imagery useful to invention" [Fish 1990]. 

O VAAAA-—■ 

Figure 1-7. An ambiguous sketch that can be interpreted as either a radio button or a check box. 

Goel noted that the ambiguity of sketches facilitates the large number of element 
interpretations and transformations necessary to explore alternatives at this stage of 
design [Goel 1995]. Goel observed several designers and found that with freehand 
sketching, when a new idea was generated, a number of variations were quick to fol- 
low, whereas with a drawing program (in this case, MacDraw) most subsequent effort 
after the initial generation was devoted to detailing and refining the same idea. 

Few electronic design environments support ambiguity or incompleteness, 
although Henderson noted the need for it in a paper describing Trillium, one of the 
early user interface builders, "The environment should support incomplete specifica- 
tions" [Henderson Jr 1986]. The sketches designers sent me in response to a survey 
(see Chapter 2, "Informal Survey of Designers") and the sketches I have seen in 
designer's work spaces exhibit a high degree of ambiguity. For example, these 
sketches contain squiggly lines to represent text and rough shapes to represent icons. 
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1.3.2      Advantages of Electronic Sketching 

Anecdotal evidence shows that a sketchy electronic interface is much more useful in 
early design reviews than a more finished-looking interface. Wong found that rough 
electronic sketches kept her team from talking about unimportant low-level details, 
while finished-looking interfaces caused them to talk more about the look rather than 
interaction issues [Wong 1992]. The belief that colleagues give more useful feedback 
when evaluating interfaces with a sketchy look is commonly held in the design com- 
munity [Rettig 1994]. In addition, as with paper-based sketches, electronic sketches 
keep the designer from focussing on the wrong issues. 

Electronic sketches have most of the advantages described previously for paper 
sketches: they allow designers to quickly record design ideas in a tangible form. In 
addition, they do not require the designer to specify details that may not yet be known 
or important. Electronic sketches also have the advantages normally associated with 
computer-based tools: they are easy to edit, store, duplicate, modify, and search. Thus 
a computer-based tool can make the design memory embedded in the annotations even 
more valuable. 

The final advantage of electronic sketches over traditional interface tools pertains 
to the background of user interface designers. A large number of user interface design- 
ers, and particularly the intended users of SILK, have a background in graphic design 
or art. These users have a strong sketching background and a survey (see Chapter 2, 
"Informal Survey of Designers") shows they often prefer to sketch out user interface 
ideas. An electronic stylus is similar enough to pencil and paper that most designers 
should be able to use one effectively with little training. In fact, the SILK usability test 
(see Chapter 6, "Evaluation") showed that designers could use SILK effectively with 
only a mouse after working through a short (approximately 45 minute) written tutorial. 

1.4      Designing Interfaces with SILK 
Designers need tools that give them the freedom to sketch rough design ideas quickly, 
the capability to specify the behavior of interface elements and the transitions between 
screens, the ability to test the designs by interacting with them, and the flexibility to fill 
in the design details as choices are made. SILK was designed with these needs in 
mind. A quick reference manual for SILK is given in Section D.10, though it is easier 
to get a feel for SILK by watching a video of the system in use [Landay 1996a]. The 
rest of this section reviews the major components of SILK and uses an extended exam- 
ple to illustrate how it is used to sketch and edit designs, specify and test interactive 
behavior, and finally to transform an interface to a more finished design. 



1.4. DESIGNING INTERFACES WITH SILK 11 

The functionality of SILK is partitioned across four windows: the sketch win- 
dow, the controls window, the storyboard window, and the Finished window (see 
Figure 1-8). The designer draws interface screens in the sketch window. These 
screens may include interactive widgets and static screen decorations. The controls 
window is used to perform editing operations on the sketch, change modes, save/load/ 
print designs, and give the designer feedback on SILK's inferences. At any point, the 
designer can copy sketches to the storyboard window. The designer can then draw 
arrows representing screen transitions on top of the screens. After switching to Run 
mode, the resulting behavior can be tested in the sketch window. When the designer is 
satisfied with the design, it can be transformed to an interface using real widgets. This 
is displayed in the Finished window. The rest of this section describes these steps in 
detail. 
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Figure 1-8. The SILK windows: Storyboard, Sketch, Controls, and Finished (top to bottom). 
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1.4.1       Sketching Interfaces 

SILK enables the designer to move quickly through several iterations of a design by 
using gestures to edit and redraw portions of the sketch. 

1.4.1.1      Primitive Components and Widgets 

Two types of pen strokes are recognized by SILK, primitive components and editing 
gestures (discussed in Section 1.4.1.3). The primitive components are basic shapes that 
when combined together make up a widget. For example, the button in Figure 1-9 was 
created by sketching a rectangle and then a squiggly line inside of it (though the order 
in which they were sketched does not matter). The other primitive components recog- 
nized by SILK are circles and lines. 

SILK Sketch! m. 

Figure 1-9. A button composed of two primitive components: a rectangle and a squiggly line. 

The system tries to recognize primitive components and user interface widgets as 
they are drawn. Although the recognition takes place as the sketch is made, it is unin- 
trusive and users need only be aware of the recognition results if they choose to exer- 
cise the widgets. Since SILK may offer multiple interpretations for a widget, which 
can be chosen from later in the design process, a SILK design can take advantage of 
the ambiguity in the sketch. A complete list of the widgets SILK recognizes and a dis- 
cussion of the recognition algorithm is given in Chapter 3, "Widget Recognition". 

1.4.1.2      Feedback 

The primitive components of the last recognized widget appear on the screen in purple 
to give the designer feedback about the inference process (see Figure 1-10). In addi- 
tion, the type inferred for the currently selected widget is displayed in the widget 
Type field and it is also selected in the panel of widget type buttons (see Figure 1-11). 
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Figure 1-10. Primitive components of recognized widgets are displayed in purple when the 
widget is selected and are treated as a group for moving and growing. 
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Figure 1-11. Widget Type field and panel of buttons show that SILK has recognized a Button. 
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If SILK made no inference on the components in question, the designer might 
group the primitive components of the widget and press the New Guess button (see 
Figure 1-12) to force the system to reconsider its inference and focus on the grouped 
components. If it is a widget that is not built-in to SILK's recognition system, the 
designer may just leave it as a grouped object. 

SILK Controls | 
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Figure 1-12. Pressing the New Guess button causes SILK to make a new widget inference, 
focusing on the selected primitive component(s) or widget(s). 

1.4.1.3      Editing Sketches 

One of the advantages of interactive sketches over paper sketches is the ability to 
quickly edit them. When the user holds down the button on the side of the stylus or the 
middle mouse button, SILK interprets strokes as editing gestures instead of gestures 
for creating new objects. These gestures, displayed in red to differentiate them from 
drawing strokes, are sent to a different recognizer than the one used for recognizing 
primitive components. The power of gestures comes from the ability to specify, with a 
single mark, a set of objects, an operation, and other parameters [Buxton 1986]. For 
example, deleting a section of the drawing is as simple as making an X-shaped stroke 
with the stylus (see Figure 1-13). 

SILK supports gestures for changing inferences, deleting, grouping, and 
ungrouping primitive components or widgets. There is also a text editing gesture. 
Examples of these gestures are illustrated in Figure 1-14. Sketching the caret gesture 
on top of text squiggles allows the user to replace the squiggles with typed text. The 
gesture can also be used for editing existing typed text or, when drawn on the back- 
ground, for creating new typed text. 
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Figure 1-13. Drawing an X-shape with the pen button or middle mouse button held down over 
objects deletes them. 
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Figure 1-14. Editing gestures for delete, group, ungroup, change inference, and text editing. The 
arrows indicate a recommended direction to draw these gestures for best recognition 

performance. 

SILK also supports more standard interaction methods for editing sketches. For 
example, an object can be selected by clicking on its outline with the left or middle 
mouse buttons. Once an object is selected, it can be cut, copied, cleared, or pasted by 
selecting from the Edit menu. These operations can be undone by selecting undo from 
the same menu. In addition, the system displays black grow handles and white move 
handles on the selected object (see Figure 1-10). Dragging on the grow handles with 
the left or middle mouse button resizes the object. Similarly, dragging on the move 
handles with the left or middle mouse button moves the object. 

1.4.1.4       Decorate Mode 

In addition to the standard widgets, designs often also contain several static elements, 
decorations, or interactive elements with a custom look. Since SILK cannot recognize 
these objects, the system has a separate decoration mode for sketching them without 
running the widget recognition engine. The designer can switch from Sketch mode to 
Decorate mode by selecting the Decorate radio button in the SILK controls window 
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(see Figure 1-15). For example, Figure 1-16 shows a "blob" object that was drawn in 
decorate mode and added to the sketched interface containing the button. Decorations 
are rendered in a dark green to differentiate them from widgets. Decorations are 
another way to create ambiguous sketches which have no system-maintained interpre- 
tations, which is a desirable property in the early stages of design (see Section 1.3.1). 
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Figure 1-15. Pressing the Decorate radio button switches SILK to Decorate mode. 

Figure 1-16. A "blob" drawn in Decorate mode has been added to the interface in Figure 1-9. 
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1.4.1.5      Annotate Mode 

SILK also supports a mode for annotating sketches with drawn, written, or typed com- 
ments. The annotation layer, which is drawn in blue, can be displayed or hidden by 
toggling the Annotate radio button (see Figure 1-17) Figure 1-18 illustrates some 
annotations that have been added to the example illustrated in Figure 1-16. 
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Figure 1-17. Pressing the annotate radio button switches SILK to Annotate mode. 

Figure 1-18. Annotations can be drawn, written, or typed and are displayed in blue. 
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1.4.2      Specifying Behavior 

Easing the specification of the interface layout and structure solves much of the design 
problem, but a design is not complete until the behavior has also been specified. 

1.4.2.1      Run Mode 
Run mode allows a designer or end-user to test an interface design. It can be turned on 
at any time by selecting the Run radio button (see Figure 1-19). For example, as soon 
as SILK recognizes the button shown in Figure 1-9, the designer can switch to Run 
mode and operate the button by selecting it with the stylus or mouse. The button will 
highlight when held down (see Figure 1-20). The highlight goes away if the mouse is 
moved out of the button or if the mouse is released over it. As with button widgets 
included with standard interface builders, this feedback indicates that the button will 
perform an action if the mouse is released over it. The other widgets recognized by 
SILK have similar interactive behaviors (see Section 3.3 for illustrations and descrip- 
tions of these behaviors). Although only objects recognized by SILK offer this feed- 
back, arbitrary sketched objects may still need to have interactive behaviors attached to 
them. This is accomplished using storyboards. 
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Figure 1-19. Pressing the Run radio button switches SILK to Run mode. 

Figure 1-20. Buttons are highlighted when the mouse is held down on them in Run mode. 
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1.4.2.2      Storyboarding 

Unfortunately, the behavior of individual widgets is insufficient to test a working inter- 
face. For example, SILK knows how a button operates, but it cannot know what inter- 
face action should occur after a user presses the button. This is specified using 
storyboards. Storyboards use the sequencing of screens to allow the specification of 
the dynamic behavior between widgets and the basic behavior of new widgets or appli- 
cation-specific objects, like a dialog box appearing when a button is pressed. Screen 
sequencing is expressed by drawing arrows in the storyboard window from objects to 
screens that should appear when the object is clicked on with the mouse (see Figure 1- 
3). Storyboards are a natural representation, they are easy to edit, and they can easily 
be used to simulate functionality without worrying about how to implement it. 

The interface illustrated in Figure 1-16 can be copied to the storyboard window 
by selecting copy screen to storyboard from the storyboard menu. The original 
screen can then be modified in the sketch window - in this example the blob is made 
larger. This process can be repeated until there are three screens in the storyboard 
window, as illustrated in Figure 1-21. Then, arrows can be drawn from the buttons in 
each screen to the next screen, as shown in Figure 1-22. Now, switching to Run mode 
and clicking on the sketched button will cause SILK to make screen transitions in the 
sketch window. The blob will appear to grow and then shrink back to its original size. 

r: SILK Storyboard g; . 
Mit  Sk.tch 

e Q Q 

Figure 1-21. Three versions of the screen illustrated in Figure 1-16 are copied to the storyboard. 

Figure 1-22. Arrows drawn on the storyboard indicate that when the button is clicked repeatedly, 
the blob should grow twice and then the sequence should start over. 
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1.4.3      Iterative Refinement 
The philosophy behind SILK is that designers are never forced to give more detail than 
they wish to, but they can add more detail as these specifics become known. For exam- 
ple, the button labels shown so far have been simple text squiggles. This is only suffi- 
cient for a short time. Eventually, the designer may wish to specify handwritten labels 
and later, typed labels. This progression is illustrated in Figure 1-23. Note that there is 
no OCR done in this example; the designer first sketches squiggles, then replaces those 
with written labels1, and later replaces the written labels with typed labels using the 
caret gesture. SILK recognizes all three versions as text labels and properly infers that 
they are part of a radio button panel. 

O bcb'cj O iTcJic 

V 
Q  bold O   italic 

Figure 1-23. Iterative refinement of text labels: squiggle to handwritten to typed. 

1.4.4       Transformation 
When the designer is satisfied with the interface, SILK can create a new window that 
contains real widgets and graphical objects that correspond to those in the rough 
sketch. These objects can take on the look-and-feel of a specified standard graphical 
user interface - SILK currently supports the Motif look-and-feel. The transformed 
interface is only partially finished since the designer still needs to finalize the details of 
the interface (e.g., textual labels, colors, and alignment). At this point, programmers 
can add callbacks and constraints that include the application-specific code to com- 
plete the application. Figure 1-24 illustrates the transformed version of the third screen 
illustrated in Figure 1-22. Notice that the button has a generic label and the blob has 
been transformed as is. 

1. The current version of SILK does not allow replacing squiggles with handwritten text that will be recognized as 
text. The code supports [- and ]-shaped gestures to perform this operation, but it is not fully implemented. 
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Figure 1-24. Transformed version of the third screen from the storyboard shown in Figure 1-22. 

1.4.5       Mode Feedback 

The proceeding overview highlighted that SILK's interface is very modal. There are 
four modes: Sketch, Decorate, Annotate, and Run. Knowing which mode the system is 
currently in does not appear to be problematic as SILK changes the drawing cursor to 
indicate the mode and the color of the ink is different for the three drawing modes 
(black for Sketch mode, green for Decorate mode, and blue for Annotate mode). 

1.4.6      Data Model 

The SILK data model is quite simple. A screen is a sketch that is created and edited in 
the SILK sketch window. It represents what is to be shown on the display to the end- 
user when the application being designed is running. A design is a collection of 
screens that are stored in the SILK storyboard window. Designs are saved to the disk 
using a filename. Another version of a design is simply a design saved under a differ- 
ent filename. 
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1.5      Design Range 
SILK is oriented towards the design of the user interfaces found in graphical editors 
and simple forms-based applications. Therefore, it recognizes and supports the interac- 
tive behavior of the standard UI widgets (e.g., buttons, text fields, scroll bars, and 
menus). SILK is not limited to this style of interface, as SILK's storyboarding compo- 
nent allows screen transitions to occur when arbitrary graphical objects are clicked 
with the mouse. A designer can use this mechanism to simulate interfaces that are not 
dominated by either the structure or behavior of the standard widgets. This technique 
was used by several designers during the SILK usability tests (see Chapter 6, "Evalua- 
tion") to support new widgets that were not built-in to SILK. Since SILK is mainly a 
tool for exploring and communicating interface ideas in the early stages of design, it is 
not necessary to support all possible interactive behaviors. 

1.6      Implementation 
SILK was written entirely in Common Lisp and runs on both UNIX workstations and 
the Apple Macintosh. SILK can be used with a mouse or a Wacom tablet. It is imple- 
mented using the Garnet User Interface Development Environment [Myers 1990c]. 
The rest of the dissertation details the implementation of the algorithms used by SILK. 

1.7      Thesis and Contributions 
The thesis postulated by this dissertation is that electronic sketches and storyboards 
can be effectively used to prototype user interfaces in the early stages of design. The 
contributions of the research include the following: 

Concepts and Techniques: 

•A new methodology, electronic sketching, for designing user interfaces. 

•A method for illustrating the behavior of a user interface visually, using story- 
boards, without conventional programming. 

•Feedback techniques for showing how the storyboard caused the current interface 
screen to become active and editing techniques for manipulating the storyboard 
screens and transitions. 

•The automatic recognition of sketched user interface components. 

•The transformation of sketched interface screens to operating user interfaces that 
use real widgets in a standard look-and-feel. 
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Artifacts: 

•The first tool designed for use during the early phases of interface design by pro- 
fessional user interface designers. In addition, through screen transformations, 
SILK also supports the later phases of the interface design cycle. Finally, the 
implementation is suitable for use by designers wishing to experiment with this 
new methodology. 

•A widget recognition algorithm that can be applied to other domains. 

Experimental Results: 

•A survey of designers which illustrates that designers are dissatisfied with the 
existing tools and methods used in the early stages of user interface design. 

•An evaluation that shows that SILK is usable for quickly designing user inter- 
faces and that designers are excited by the prospects of using electronic story- 
boarding instead of programming for illustrating interactive behaviors. The 
evaluation also showed that SILK allowed designers to effectively communicate 
their design ideas to engineers. 

•A demonstration of successful uses for sketch-based interfaces. 

1.8      Dissertation Outline 
The rest of this dissertation describes how SILK functions and how it can be used 
effectively by user interface designers. To ensure that the system would work well for 
its intended users, I took an informal survey of professional user interface designers to 
determine the techniques they now use for interface design. The results of the survey 
and a discussion of how these results were used in the design of SILK are presented in 
Chapter 2. 

The next three chapters describe SILK's technical details. Chapter 3 describes 
the algorithm used to recognize sketched widgets. Chapter 4 contains the implementa- 
tion details necessary to support electronic storyboards. Chapter 5 discusses annota- 
tions, sketch transformations, and other supporting features for the later stages of the 
design process. 

Chapter 6 discusses a descriptive evaluation of SILK with six designers and six 
engineers which showed designers could effectively use SILK to design user interfaces 
and that they saw a lot of potential for electronic sketching and storyboarding. The 
testing also illustrated that SILK allows designers to effectively communicate design 
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ideas to engineers. In fact, the designers and engineers were able to discuss designs 
and make changes to them while the engineers were present. 

Chapter 7 contains a review of the work related to this research. This is followed 
in Chapter 8 by a discussion of some new research problems that building SILK has 
brought to light. Finally, Chapter 9 summarizes the dissertation and reviews its contri- 
butions. 



CHAPTER 2 

Informal Survey of Designers 

One of the basic tenets of human-computer interaction is the importance of user-cen- 
tered systems design [Draper 1986]. This methodology requires knowing who the 
intended users of the system are, involving them in the design, keeping their needs in 
mind during design and implementation, and having these users test prototypes of the 
system throughout the design process. As mentioned earlier, SILK was designed for 
user interface designers, particularly those with an art or graphic design background. 
To determine the needs of this user population, I followed three related courses of 
action: 

1) I read the design literature and on-line design discussion groups. 

2) I spoke with designers and observed their designs and work spaces. 

3) I surveyed designers with a written questionnaire. 

The first two research items are discussed elsewhere (see Sections 1.2, 1.3, and 
7.1). This chapter contains a description of the third item, the written questionnaire. It 
opens with an overview of the methodology used and is followed by some quantitative 
and qualitative results. The last section contains a discussion about what these results 
imply for a user interface design tool and how these results were used in the design of 
SILK. 

2.1      Methodology 

To help ensure that SILK would work well for its intended users, I took an informal 
survey of professional user interface designers to determine the techniques they now 
use for interface design. To carry out this survey, I took the following steps: 

1) I wrote the initial questionnaire 

2) I piloted the questionnaire with three designers 

25 
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3) I revised the questionnaire based on the results of the pilot 

4) I posted the questionnaire to the Internet's VISUAL-L mailing list1 

5) I analyzed the returned questionnaires 

Since the questionnaire was posted to a mailing list, the individuals who 
responded are self-selected. This is why I term the survey "informal." Nevertheless, 
these results were useful for giving some direction to the original design. 

2.1.1      What Was Asked 

The designers were asked about their background and the tools and techniques they 
used in the early stages of user interface design. The questionnaire asked them what 
they liked and disliked about paper sketching, and what they liked and disliked about 
electronic tools. The designers were also given a description of SILK and asked to 
comment on the strengths and weaknesses of such a tool. In addition, the designers 
were asked to estimate the percentage of time they spent sketching different types of 
interface elements. Finally, I asked the designers to send me sketches that they had 
made early in the design cycle of a user interface. The designers were assured that 
these sketches would be kept in confidence. The complete questionnaire is included in 
an appendix (see Appendix Section A.l). 

2.2      Survey Results 
The survey was first posted on September 4, 1994 and the last response was received 
on October 30, 1994. A total of 31 designers responded to the survey. There were 
approximately 3002 subscribers to the list at that time. A summary of the data from the 
returned questionnaires is included in the appendix (see Appendix Section A.2). 

2.2.1       Background of Designers 

The designers surveyed have an average of about six years experience designing user 
interfaces. They work for companies from around the world that focus on areas such as 
desktop applications, multimedia software, telephony, and computer hardware manu- 
facturing. Respondents who reported having backgrounds in architecture, art, graphic 
design, industrial design, or visual communications were grouped together and termed 
visual designers. Eighteen (58%) of the designers had this visual design background 

The VISUAL-L mailing list discusses the design of visual interfaces and is maintained at Virginia Tech. Univer- 
sity and can be accessed by mailing to the following email address: listserv@vtvml. cc. vt. edu 
This is an upper-bound estimate made by the mailing list maintainer Andrew Cohill (cohill@bev.net) in 
October of 1996: "back then my hazy memory recalls less than 300 people." Cohill estimates that there are 
approximately 950 subscribers as of October 1996. 



2.2. SURVEY RESULTS 27 

and thirteen of the respondents did not. Eleven of the thirteen non-visual designers had 
backgrounds in engineering or psychology. Though not entirely accurate, the thirteen 
designers without a visual design background are termed engineers. All of the respon- 
dents are termed designers. As visual designers are the intended users of SILK, this 
chapter focuses on their responses to the questionnaire. The results for engineers are 
similar and are shown after the visual design numbers in the following sections. These 
numbers will only be compared in the cases where they are substantially different3. 

2.2.2      Why Designers Sketch 

Almost all of the respondents (100% of the visual designers and 85% of the engineers) 
sketch in the early stages of user interface design, whereas only about half (56% of the 
visual designers and 62% of the engineers) also use software tools at this stage. The 
survey tried to collect some qualitative feedback both on why designers sketch at this 
stage and why they do not always use electronic tools. 

The speed of sketching was the most commonly cited reason (by 50% of the 
visual designers and 62% of the engineers) for not using software tools at this stage. 
Both groups claimed that user interface tools, such as HyperCard or user interface 
builders, would waste their time during this phase. One designer stated that in the early 
stages of design "iteration is critical and must happen as rapidly as possible — as 
much as two or three times a day." The designer said that user interface builders 
always slowed the design process, "especially when labels and menu item specifics are 
not critical." This comment is consistent with that of another designer who claimed 
paper was more useful in the early stages when they "did not understand the problem 
well" and wanted to try several different ideas. Most of the designers also cited their 
familiarity with paper as a graphic designer. The use of pencil and paper was described 
as intuitive and natural. 

The designers also noted the importance in leaving the design in a rough state. 
This keeps the designer from focusing on unimportant details, as illustrated by com- 
ments such as: "[sketches are] crude enough so that I don't spend time trying to work 
on details that the design is not ready for" and "paper is the most versatile tool in the 
early stages of an interface design, when the 'tyranny of the pixel' is the furthest thing 
from the designer's mind." Another important motivation for keeping the design 
sketchy is to keep observers from getting the wrong impression of a design, as illus- 
trated by comments such as: "there seems to be an implied commitment to something 
once it hits the screen," "it is important that the client 'sees' the work as ideas and not 

3. I only discuss these numbers when the absolute difference between them is more than 30 percentage points. I am 
not implying that the numbers differ in a statistically significant way. This is mainly due to the fact that the 
respondents to the questionnaires were not randomly selected and the sample size is rather small. Thus, statisti- 
cal analysis may not be appropriate. 
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the final design - therefore the work should have that sketchy feel to it," and "if you 
use the computer you face the problem of 'over concretization' - that is, even the most 
flippant ideas look as if they are 'real interface.' The problem looks to be solved, when 
in fact it is not at all." Keeping details from getting in the way of both the designer and 
evaluators was cited by 22% of the visual designers and 8% of the engineers. 

Other reasons cited for sketching included its ease of use and versatility (cited by 
33% of the visual designers and 23% of the engineers), and the collaboration and port- 
ability afforded by sketching on paper and whiteboards (cited by 33% of the visual 
designers and 62% of the engineers). Finally, 39% of the visual designers and 23% of 
the engineers cited the perspective and ease of organization that sketches provided. 

In summary, sketching was cited as more useful at this stage because it is good at 
"catching ideas quickly," it is inherently ambiguous, and it is portable. 

2.2.2.1      Electronic Tools Designers Use 

The designers gave two common reasons for using computer software in these early 
stages. First, software permits adding dynamic behavior that can be tested with users. 
Second, computer tools, specifically user interface builders, allow the designer to pro- 
duce an artifact that may be used in the final design. 

The designers used a wide range of software-based design tools in their work. 
This section tries to give a breakdown of the most common tools and shows some sig- 
nificant differences between those with and without a visual design background. Most 
of the designers surveyed (83% of the visual designers and 69% of the engineers) have 
used HyperCard, Director, or Visual Basic during the prototyping stage of interface 
design. Some also used high-powered user interface builders. The most commonly 
cited were TeleUSE [Thomson Software Products 1996], DevGuide [Sun 1991], 
NeXT Interface Builder [NeXT 1991], and X-Designer [1ST 1996]. The designers 
listed 19 different user interface builders. 

Macromedia's Director was the most common tool cited by those with a visual 
design background (61% of the visual designers and only 23% of the engineers), 
whereas Apple's HyperCard was more commonly used by engineers (69% of the engi- 
neers and only 33% of the visual designers). This difference between Director and 
HyperCard may be explained by their intended uses. Director was intended for build- 
ing multi-media presentations, but it is fairly general and allows designers to paint, 
draw, and animate custom objects easily. In fact, everything is custom, as there are no 
built-in objects. This freedom is appealing to designers who are trying to give a flavor 
of an interface in the early stages of design. 
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In contrast, HyperCard is intended for building small applications based on but- 
ton clicks. The drawing interface is fairly constrained and thus it is not as easy to cre- 
ate new objects, although there is a palette of standard widgets to choose from. In 
addition, HyperCard applications rely much more on its scripting language, Hyper- 
Talk, than Director presentations rely on its Lingo language. Designers with a back- 
ground in graphic design or art typically do not have, nor do they wish to learn, 
sophisticated programming skills. For example, one designer claimed that Director 
was the "best prototyping tool, but [it] relies too heavily on code for simple prototyp- 
ing." 

The designers often reported that Director was only useful for "movie-like" pro- 
totyping, i.e., as a tool to illustrate the functionality of the user interface without the 
interaction. In addition, the designers disliked Director because it lacked a widget set, 
the designs could not be used again in the final product, and every control and system 
response had to be created from scratch. HyperCard was also cited for its lack of some 
necessary user interface components. 

Visual Basic (used by 33% of the visual designers and 23% of the engineers) and 
user interface builders (used by 44% of the visual designers and 54% of the engineers) 
were used by both groups. It is possible that if the survey were done now, a larger per- 
centage of designers would be using Visual Basic (VB) than HyperCard or Director, as 
VB seems to have become quite popular in the design community. This may be due to 
three reasons: 1) there are a large number of third-party widgets and controls (VBXs) 
available for VB, 2) it integrates a user interface builder with an interpretive language 
that is considered easy-to-learn compared with most traditional industrial program- 
ming languages (e.g., C), and 3) Microsoft's Windows operating system currently 
dominates the computer market. 

The designers complemented the user interface builders, such as TeleUSE and 
the NeXT Interface Builder, on their complete widget sets and the fact that the designs 
could be used in the final product. Though, the difficulty of learning to use the user 
interface builders, especially those with scripting languages, was considered a draw- 
back. In fact, "hard to learn" programming or scripting languages seemed to be a 
major concern for all of these systems. One designer said that interface design tools 
require "too much programming to do anything innovative." 

2.2.3      What Designers Sketch 

Besides finding out what tools designers use and why they prefer sketching to com- 
puter-based tools, it was also important to see what types of sketches designers made. 
In response to my request for sketches, I received four design sketches. These sketches 
were fairly rough and ambiguous. They contained squiggles to represent text and 
rough icons that acted as buttons. In addition many of the sketches were covered with 
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Figure 2-1. Sketch of a user interface for a voicemail application. Reproduced by permission of 
Annette Wagner, Sun Microsystems. 

hand-written annotations. Figure 2-1 is an example of one of the sketches I received; I 
was given permission to reproduce this sketch. As mentioned previously, the designers 
were assured these sketches would be kept in confidence, so the rest are not repro- 
duced here. The remainder of this section reports the mean percentages of time that 
designers said they spent sketching particular types of user interface elements. 

The survey showed the designers spent much of their time sketching the stan- 
dard widgets that are found in a toolkit: buttons, scroll bars, etc. (26% of visual 
designer's time and 30% of engineer's time). Arbitrary static graphics and decorations 
were the next most commonly sketched elements (25% of the work of visual designers 
and 15% of the work of engineers). The written comments showed that designers were 
unhappy with tools that did not allow them to add these decorations easily. Interactive 
graphical objects (4% of visual designer's work and 12% of engineer's work) and mul- 
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timedia applications that use video and sound (9% of visual designer's work and 12% 
of engineer's work) were less commonly sketched. 

The survey also showed that designers occasionally need to design controls with 
custom looks or behaviors (20% of the work of visual designers and 12% of the work 
of engineers). Often these are widgets whose behavior is analogous to that of a known 
widget. For example, designers frequently need to draw a new icon and specify that it 
should act like a button. Occasionally, designers need to sketch a widget that has an 
entirely new behavior. Finally, the "other" category was responsible for the remaining 
design time (16% of the time of visual designers and 18% of the time of engineers). 
This category included designing the layout of widgets and designing interactions that 
span multiple widgets or windows. 

Several of the written comments show that designers often illustrate sequences of 
system responses and annotate the sketches as they are drawn. One designer claimed 
that an annotated sketch could be presented to management and tested with users 
before building a prototype. This is a simple form of storyboarding. Another said that 
"storyboarding is extremely important to interface design. It's a quick way to show a 
user/client how they would perform search, selection, and navigation on an interface/ 
system without having the system engineers and programmers actually implement the 
design into a system." 

2.2.4       Interest in SILK 

The designers reacted favorably to a short description given to them about SILK. 
Some were concerned that it was not really paper and that they might need to get 
accustomed to it. Others wanted assurances that the system would share the portability 
they currently have with paper. The comments were positive overall. The designers felt 
the described system would allow quick implementation of design ideas and it would 
also help bring the sketched and electronic versions of a design closer together. In 
addition, the designers were happy with the ability to quickly iterate on a design and to 
eventually use that design in the final product. All but three (83% of visual designers 
and 100% of engineers) expressed a willingness to try such a system. 

2.3      Design Implications for SILK 
The primary purpose of the informal design survey was to confirm the original design 
ideas for SILK and to focus the research on areas that were not originally anticipated. 
For example, until I visited designers in their work places and took the design survey, I 
did not even consider the support for annotations of sketches. 
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One of the most important results of the survey was in highlighting the impor- 
tance of sketching in two different respects. First, designers believe the physical action 
of sketching is quicker and encourages creativity during this early design phase. Sec- 
ond, the roughness embodied in a sketch keeps both the designer and evaluators from 
focussing on details too early in the design process. This result confirmed two major 
design decisions: the choice of a sketch-based interface for design instead of a palette 
of sketchy widgets and the decision to keep the design rough rather than cleaning it up 
after each widget recognition. 

Another important result of the survey was the fact that many of the designers 
seemed to use software-based tools only because of the interactivity or the re-use they 
provided. This confirmed that interactive behavior should be an important part of any 
new tool and that the entire design process could be improved if SILK had the ability 
to hand off the design to another tool later in the design process (see Section 5.2). 

Finally, by finding out that designers spent a lot of their time sketching common 
toolkit widgets and static graphics, SILK could be designed to support these elements 
best, yet still allow less common elements to be used. Since many designers already 
use paper-based storyboards, need to support interaction, and occasionally design wid- 
gets with new behaviors, electronic storyboarding can be used to support these needs 
(see Chapter 4, "Storyboarding"). 



CHAPTER 3 

Widget Recognition 

Allowing designers to sketch on the computer, rather than on paper, has many advan- 
tages, as discussed in Chapter 1. Several of these advantages cannot be realized with- 
out software support for recognizing the interface widgets in the sketch. Having a 
system that recognizes the drawn widgets gives the designer a tool that can be used for 
designing, testing, and eventually producing a final application interface. SILK's rec- 
ognition engine identifies individual user interface components as they are drawn, 
rather than after an entire sketch has been completed. This way the designer can test 
the interface at any point without waiting for the entire sketch to be designed and rec- 
ognized. This is key for a tool that supports iterative design. In fact, I observed sub- 
jects trying out new ideas and immediately testing them during usability testing (see 
Chapter 6, "Evaluation"). 

This chapter gives an overview of the widget recognition process, describes how 
primitive components are recognized, explains how the rules system is used to com- 
bine primitive components into widgets, and finishes with some ideas on how to learn 
new rules. 

3.1       Recognition Overview 
Working within the limited domain of common 2-D interface widgets (scroll bars, but- 
tons, pulldown menus, etc.) facilitates the recognition process. This is in contrast to the 
much harder problems faced by systems that try to perform generalized sketch recog- 
nition or beautification [Pavlidis 1985]. A rule system, which contains basic knowl- 
edge of the structure and make-up of user interfaces, allows SILK to infer which 
widgets are included in the sketch. 

33 
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Figure 3-1. Phases of SILK's widget recognition algorithm. 

The widget recognition algorithm is broken into three phases, as illustrated in 
Figure 3-1. First, SILK tries to recognize the primitive components in the sketch as 
they are drawn. The primitive components are basic shapes that when combined 
together make up a widget. For example, the scroll bar in Figure 3-2 was created by 
sketching a tall, thin rectangle and then a small rectangle (though the order in which 
they were sketched does not matter1). After recognizing a primitive component, the 
system looks for spatial relationships between the new component and other compo- 
nents in the sketch. Finally, the result is passed to a rule system which tries to combine 
that component together with related components to form a more complex widget. The 
rest of this chapter describes these three recognition phases. 

1. The arrows indicate a preferred starting point and direction of the stroke for each primitive. 
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Figure 3-2. A vertical scroll bar composed of two rectangles. 

3.2      Recognizing Widget Components 
The recognition engine uses Rubine's gesture recognition algorithm [Rubine 1991b; 
Rubine 1991c] to identify the primitive components that make up an interface widget. 
The primitive components recognized by SILK include rectangles, circles, lines, and 
squiggles (which represent text). These components are illustrated in Figure 3-3. The 
arrows indicate a preferred, but not required, drawing direction. Each of the primitive 
components of a widget are trained by example using the Agate gesture training tool 
[Landay 1993]. Each primitive component was trained with 15-20 examples. The 
examples varied in size and drawing direction. 

L /SAA$NA/\,A/ 

Figure 3-3. Primitive components recognized by SILK - rectangle, circle, line, and a squiggle 
that represents text. 
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3.2.1        Rubine's Algorithm 

Rubine's algorithm uses statistical pattern recognition techniques to train classifiers 
and recognize gestures. These techniques are used to create a classifier based on the 
features extracted from several examples. In order to classify a given input gesture, the 
algorithm computes the distinguishing features of the gesture and returns the best 
match with the learned gesture classes. The following features of the gesture are used: 

•cosine and sine of initial angle with respect to the x axis 

•length of the bounding box diagonal 

• angle of the bounding box diagonal 

•distance between first and last point 

•cosine and sine of angle between first and last point 

•total gesture length 

•total angle traversed 

Rubine's original algorithm also computed the maximum speed (squared) and 
the path duration, but these two temporal features were not used as Rubine found they 
were not very useful [Rubine 1991a]. 

3.2.1.1      Limitations of Rubine's Algorithm 

The algorithm currently limits SILK to single-stroke gestures for the primitive compo- 
nents. This means the components must be drawn with a single stroke of the pen (i.e., 
not lifting up the pen or mouse button during the stroke). A single stroke of the pen 
was used to draw each of the rectangles that comprise the scroll bar in Figure 3-2. 

There are several possible solutions that overcome this limitation. The first solu- 
tion takes advantage of the observation that single-strokes only appear to be a limita- 
tion for rectangles. That is, most of the other shapes are commonly drawn with only 
one stroke of the pen. Therefore, the low-level gesture recognizer could be trained with 
L and U shapes, as seen in Figure 3-4. By combining recognized line gestures together 
to form these shapes and also combining recognized L- and U-shaped gestures 
together with lines, the system could then recognize rectangles made with 1,2, 3, or 4 
strokes. 

Another solution to the multi-stroke problem is to modify the low-level recog- 
nizer to support multiple strokes. One way to do this is to add a time-out mechanism to 
the gesture interactor supplied by Garnet [Landay 1993]. The interactor currently 
sends points to the recognizer as soon as the pen is lifted. Instead, it could wait until 
the pen has been lifted for a specified amount of time. If the user starts making new 
strokes before the time-out has passed, then it is assumed that the new stroke is a con- 
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Figure 3-4. Partially completed rectangles made up of L and U shapes. 

tinuation of the previous stroke. Eventually, the time-out will be passed without a new 
stroke. At that point, the previous set of strokes can be ordered in some logical way 
(for example, by finding the closest strokes to the endpoints of a given stroke) and 
passed as one set of points to the unmodified single-stroke gesture recognizer. 

The main difficulty with a time-based scheme is in picking a time-out value that 
is not confusing to the user - it should not force unrelated strokes to be grouped 
together and likewise it should not separate related strokes. Other researchers have 
used a scheme in which the time-out is proportional to the size of the previous stroke. 
They have indicated that a more complex scheme may be necessary [Apte 1993b]. 
Another problem may be in ordering the points in a way that does not undermine the 
predictive ability of the features used by Rubine's algorithm. 

The other major limitation of Rubine's algorithm is the fact that it does not 
account for variations in size or rotation. In SILK, rotations are only a problem for 
editing gestures, but the lack of support for variations in size is problematic in recog- 
nizing both editing gestures and the primitive components. One way to deal with this 
limitation is to train gestures of many varying sizes. The problem with this approach is 
that it leads to a recognizer that performs better on the average sizes, but not well on 
the outliers. To work around this in SILK, I broke up some of the primitive compo- 
nents into multiple classes. For example, rectangles are divided into rectangle- 
large, rectangle-small, rectangle-very-small, and rectangle-thin. All of 
these are mapped into the type rectangle as soon as they are returned from the low- 
level gesture recognizer. Rubine's algorithm tends to do much better when the gestures 
are organized in this manner. 
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3.2.2       Training from Corrections 

One innovation in SILK is the ability to learn new examples of gestures representing 
the primitive components during regular use of the system. This feature was added 
after some early user testing revealed that when the system made a recognition error 
on a primitive component, the user was forced to delete the object and then redraw it. 
Previously, the type of the recognized component was only displayed in the Primi- 
tive Type field. In response to this problem I added a panel of buttons in the SILK 

controls window (see Figure 3-5). These buttons represent the primitive compo- 
nents. When SILK recognizes a primitive component, the appropriate button is high- 
lighted. If the system misrecognizes the component, the user can easily click on one of 
the alternative buttons and SILK will use that new type definition instead. 

SILK Controls 

File Edit Arjrange Recognition Sfcoryboard 

Design Hans: 

■O- Sketch: :.'■"<>: Run     wAnnotate  \sDecorate 

Guess| ->-•;        "■    widget Type: ; 

Batten     I ■■   Check-Sex    I  . .Radio-Button 

.Text-Field   | Palette 

Primitive Type; Rectangle 

| ^Rectangle __   Circle  |    Line   | ;  Text   } Unrecognized | 

Figure 3-5. Primitive type buttons (bottom) in STIX. controls window. 

The next improvement in SILK's recognition mechanism was taking advantage 
of the user's correction to improve future inferences. After passing the points compos- 
ing the corrected stroke, the correct gesture name, and the current gesture classifier to 
the gesture training routines, SILK produces a new classifier which will more accu- 
rately recognize the user's strokes. As implemented, the system performs this retrain- 
ing transparently to the user. The new classifier takes effect immediately, but is not 
saved to disk until the user next saves her design. The new classifier is saved to the 
user's home directory and the system looks for one of these personalized classifiers 
each time it starts up. 
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3.3      SILK Widgets 

The following set of figures illustrate1 the complete set of widgets SILK recognizes 
and the feedback these widgets display when manipulated in Run mode. SILK also 
recognizes vertical and horizontal sequences of buttons, check boxes, and radio but- 
tons as panels. 

Figure 3-6. A button. 

vW/w 

Figure 3-7. Buttons are drawn in reverse video when the mouse button is held down over them. 
The feedback is removed when the mouse is released. 

'ivV^ 
Figure 3-8. A check box. 

Figure 3-9. Check boxes display an X-shape in the box when they are selected with a mouse click 
on the box. Another click on the box will deselect it and turn the feedback off. 

Figure 3-10. A text field. Note: the text field currently offers no Run mode feedback. 

1.   Note that these sketches were not generated with SILK to allow the easy addition of arrowheads. 
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Figure 3-11. A radio button. 

Figure 3-12. Radio buttons fill the circle when they are selected with a mouse click on the circle. 
Another click on the circle will deselect it and turn the feedback off. Note: if the radio button is in 
a panel of buttons, only one can be selected at any time. Selecting a new radio button in the same 

panel will deselect the currently selected radio button. 

\l 

Figure 3-13. A menu bar. Note: labels must be drawn at upper left corner of the SILK sketch 
window. 

VW<*^ [ Vi^^^J^]  v/W^^ 

Figure 3-14. Menu bars display a generic pulldown menu when the mouse is held down over the 
bar items. The mouse can be moved between menu items in the resulting pulldowns. Another 

menu can be selected by moving the mouse to the new bar item without releasing. The currently 
selected bar item and menu item are enclosed by roundtangles. When the mouse is released, the 

pulldown disappears. Note: currently, there is no way of specifying the strings for the menu items 
(though they can be specified for the bar items) or the transitions from those menu items. 
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f- 

Figure 3-15. Vertical and horizontal scroll bars. The scroll bar "elevator" can be dragged within 
the confines of the outer rectangle. 

n 
D 

Figure 3-16. A scrolling window. Note: scrolling windows can have any combination of scroll 
bars at left and below. Currently, objects in the window do not scroll. 
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Figure 3-17. A palette. Note: there can be an arbitrary number of boxes and arbitrary graphics 
can be drawn in the boxes. 

Figure 3-18. Clicking on the rectangle containing a palette item selects it. The currently selected 
item is displayed in inverse video. Only one item can be selected at a time. 
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3.4      Composing Components 
In order to recognize interface widgets, SILK's algorithm must combine the results 
from the classification of the single-stroke gestures that make up the primitive compo- 
nents. The way it does this is to first find some basic spatial relationships between the 
new component and the other primitive or widget components in the sketch. Then 
these relationships are passed along with the known types of components to a rule sys- 
tem that tries to identify the most likely widget which includes the new component. 

3.4.1      Spatial Relationships 

As each component is sketched and classified it is passed to an algorithm that looks for 
the following spatial relationships (among both primitive and widget components): 

•Does the new component contain or is it contained by another component? 

•Is the new component near (left, right, above, below) another component? 

•Is the new component in a vertical or horizontal sequence made up of any combi- 
nation of components of the same type or sequences of that type? 

The first relationship is the most important for classifying widgets. Many of the 
common user interface widgets can be expressed by containment relationships 
between more primitive components. For example, the scroll bar in Figure 3-2 is a tall, 
skinny rectangle that contains a smaller rectangle. The second relationship allows the 
algorithm to recognize widgets such as check boxes, which usually consist of a box 
with text next to it. The final relationship allows for groupings of related components 
that make up a set of widgets (e.g., a panel of radio buttons). 

3.4.1.1      Overriding Spatial Relationships 

After early user testing, SILK was modified to allow the user to specify hints that over- 
ride the normal calculation of these spatial relationships. A prime example of this is 
when sketching a pulldown menu bar. A pulldown menu bar is defined as a sequence 
of menu items at the top left of the window. Real applications often also have some 
items of the same menu bar at the far right of the window (e.g., for a help menu). 
Unfortunately, sequences are defined as a series of the same type of object such that 
each item is "near" the preceding item. This rules out many cases, including the one 
described above. 
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To allow cases that violate SILK's distance constraints, the distance between 
objects is ignored if multiple objects are selected at the time of inference. To give this 
hint, the user can select multiple objects and then choose New Guess. Then, the objects 
will be considered near each other and objects of the same type in a horizontal or 
vertical line will be considered a sequence. This is also useful when the designer 
sketches the text of a radio button or check box too far from the circle or rectangle, 
respectively. 

3.4.2      Rule System 

After identifying the basic relationships between the new component and the other 
components in the sketch, SILK passes the new component and the identified relation- 
ships to a rule system that uses basic knowledge of the structure and make-up of user 
interfaces to infer which widget was intended. Each of the rules that matches the new 
component and relationships assigns a confidence value that indicates how close the 
match is. 

3.4.2.1      Rule Structure 

There is at least one rule for each widget1 that is recognized by SILK. The "test" part 
of the rule checks whether the rule applies. For example, the test for a vertical scroll 
bar is illustrated in Figure 3-19. This test makes sure that one component is contained 
by the other, both components are rectangles, and the container is skinny. This rule 
illustrates that some simple graphical characteristics of the objects (in this case deter- 
mining whether the container is skinny or not) are considered in addition to the com- 
ponent types and spatial relationships. 

(and   (contains-p container containee) 
(rectangle-p container) 
(rectangle-p containee) 
(skinny-p container   :vertical)) 

Figure 3-19. Test for vertical scroll bar rule. 

1. The current implementation uses exactly one "rule" for each widget. This is because the rules are implemented 
as arbitrary Lisp functions that can each have multiple "test" / "then" pairs. A cleaner implementation would 
break these compound rules up into multiple rules. 
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The "then" part of the rule simply returns a list containing a confidence value for 
that match, a function that when evaluated can add the correct interactive behavior to 
the given sketchy components, and the widget type. For example, the "then" part for 
the vertical scroll bar is illustrated in Figure 3-20. At this time, the confidence values 
are assigned weights that I have constructed by simple experimentation. Rules for wid- 
gets that have no alternative inferences are given a confidence value of 1. Rules for 
widgets with more than one "test" / "then" pair are given a range of values less than or 
equal to one. The pair with what seems the most likely inference is given a confidence 
value of 1. The complete set of rules used in SILK is given in Appendix E. 

(list 1 '(scroll-bar-constructor 
,container ,containee 
,widget-agg :vertical) 

'scroll-bar) 

Figure 3-20. "Then" part for vertical scroll bar rule. 

3.4.3       Attaching Behavior 

After each of the rules have been tried, the algorithm then takes the match with the 
highest confidence value and evaluates the constructor function given in the list 
returned by the rule. This function assigns the sketched components to a new aggre- 
gate object that represents the widget. The system keeps a list of all rules that matched 
ordered by confidence value. This way it is easy to allow the designer to revise SBLK's 
inference if it is incorrect (see Section 3.6). If none of the rules match, the system 
assumes that there is not yet enough detail to recognize the widget. Note that there is 
one constructor function for both horizontal and vertical scroll bars, so the rule illus- 
trated in Figure 3-20 passes the vertical tag to cause a vertical scroll bar to be con- 
structed. 

Each of the widgets that SILK recognizes has a corresponding Garnet object that 
use the Garnet Interactor mechanism [Myers 1990a] to support interaction and feed- 
back. When SILK identifies a widget, it attaches an instance of an interactor object that 
implements the required interaction to the new aggregate object. For example, the 
scroll bar interactor object knows how to allow dragging of the "elevator" up and down 
without letting the "elevator" leave the confines of the scroll bar. 
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3.5      Recognition Examples 

This section presents two walk-throughs of the widget recognition algorithm. In the 
first example, the designer initially drew a text squiggle Figure 3-21 (a). The gesture 
recognizer returns text (b), but no graphical relationships (c) and thus no rule system 
matches are found (d). The user then sketches a rectangle around the text (e), which is 
recognized by the gesture recognizer (f). This is passed to the graphical relationship 
detector which returns the fact that the rectangle contains some text (g). Using this, the 
rule system infers that the rectangle and text combine to form a button (h). 

(a) V/V^A^s^ 

(b) 

(c) 

(d) 

(e) 

gesture recognizer 

graphical relationship 
detector 

rule system 

I 
(text) 

I 
none 

1 
no matches 

(f) 

(g) 

(h) 

gesture recognizer 

graphical relationship 
detector 

I 
(rectangle) 

I 
(rectangle) contains (text) 

rule system I 
(button) 

Figure 3-21. Phases performed by the widget recognition algorithm on the example drawn in (a) 
and (e). 
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The second example is shown in Figure 3-22. Assume the check box on the left 
and the rectangle on the right in (a) have been successfully recognized. After the 
squiggle on the far right is drawn, the gesture recognizer returns text (b). This is 
passed to the graphical relationship detector which returns the fact that the text is to 
the right and aligned1 with the rectangle (c). This fact is then passed to the rule system 
which infers that the rectangle and text combine to form a check box (d). This is fed 
back into the graphical relationship detector (as implied by Figure 3-1), which detects 
a sequence of check boxes (e). Finally, this is passed again to the rule system, which 
returns a match for a check box panel (f). This is passed back into the graphical rela- 
tionship detector, but no further relationships are found. 

(a)      ]    J \MAAVV       I L VA/^^ 
(check box) (rectangle)     (???) 

(b) gesture recognizer 

(c) graphical relationship 
detector 

I 
(text) 

I 
(text) right of aligned (rectangle) 

(d) rule system 

(check box) 

(e) graphical relationship 
detector 

I 
I 

sequence of (check box) 

(f) rule system 

(check box panel) 

Figure 3-22. Phases performed by the widget recognition algorithm on the example drawn in (a). 

I 

1. Note that the text is too far from the check box on the left for any relationship between those two objects to be 
returned. 
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3.6      Revising Widget Inferences 
In any system that does inferencing, it is important to give the designer good feedback 
on the inference results and make it easy to change those results when the system has 
erred. 

3.6.1      System Feedback 

SILK gives the designer feedback on two related decisions: the type of the last primi- 
tive or widget inference, and an indication of which alternative inferences are avail- 
able. SILK displays primitive type inferences in the Primitive Type field and in a 
panel of buttons, as was described in Section 3.2.2. 

Widget inference feedback is given in three different ways: using color, text 
fields, and button panels. After an inference has been made, the system draws the 
primitive components forming the proposed widget in purple to indicate they are 
related. In addition, the widget type is displayed in the widget Type field of the SILK 

controls window (see Figure 3-23). The type is also selected in the panel of widget 
buttons in the same window. The buttons representing all other possible inferences are 
also enabled. For example, Figure 3-23 shows that SILK has inferred a radio button, 
but indicates that a check box or multiple unrelated objects are also possible inferences 
by not graying out those buttons. The control window can be iconified if the designer 

232)2 
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Figure 3-23. SILK infers that the designer has drawn a radio button. The buttons for check box 
and multiple objects are also enabled, indicating those are possible alternative inferences. All 

other buttons are grayed out, indicating they are not possible inferences. 
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wishes to sketch ideas quickly without any interruptions. Later, she can go back, select 
each widget, and make sure they are of the correct type. 

3.6.2      Automatic Reinferencing 

Modifying an existing sketch should cause SILK to revise previously made widget 
identifications. For example, adding new components to the sketch, deleting compo- 
nents in a widget, or moving components should all cause the system to revise previ- 
ous widget identifications. This would only occur if the changes caused the rule 
system to identify a different widget as more likely than its previous inference. The 
current implementation does not do this. 

SILK lacks automatic reinferencing because the graphical relationship search 
does not check the children of any top level object or widget. This could be changed, 
but it is not clear that breaking up previously inferred widgets would be satisfactory 
without other major changes to the system. Specifically, the calculation of rule confi- 
dence values would need to account dynamically for how well a particular rule 
matched the given components and spatial relationships. SILK's hard-coded confi- 
dence values only allow choosing between known alternative inferences for the same 
set of components. For example, SILK can choose between a radio button and a check 
box. This is necessary because the low-level primitive component recognizer is not 
100% reliable at distinguishing between small circles and small rectangles. 

Figure 3-24 illustrates the problem with hard-coded confidence values. The 
three objects were drawn in order from left to right. The confidence values say nothing 
about choosing between the possible check box on the left or the possible text field on 
the right. Which is more likely? Should the system automatically break-up the check 
box to allow the text field inference? Currently, this can only be done by explicitly hit- 
ting the New Guess button while the check box (the first inference) is selected.1 

^ WV\A/w( ] 
Figure 3-24. Should SILK infer a check box or a text field? 

1. Note that the rectangle on the right does not need to be selected. It will be considered with the text when the 
check box on the left is broken up in order to generate new guesses. 
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3.6.3       Designer-guided Reinferencing 

The designer can help the system make the proper inference when the system has 
made the wrong choice, no choice, or the widget that was drawn is unknown to the 
system. In the first case the designer might use the New Guess button or gesture to ask 
the system to try its next best choice. Alternatively, the designer may just click on one 
of the available widget Type buttons in the SILK controls window. These alterna- 
tive inferences are only kept until the user starts sketching something new. If the New 
Guess button is used later, SILK runs its inference algorithm, regenerates the alterna- 
tives, and changes the type of the widget to the next best choice. 

If SILK made no inference on the widget in question, the designer might select 
the primitive components and click on the New Guess button, thus forcing the system 
to reconsider its inference and focus on the components that have been selected. As 
discussed previously (see Section 3.4.1.1), SILK will then ignore distance require- 
ments between the selected items when testing the widget rules. For example, 
Figure 3-25 shows the rule for a radio button. If the individual components of a poten- 
tial radio button are selected (see Figure 3-26) and the user clicks on the New Guess 
button, SILK redefines the result of near-p to return true for the two objects, not just 
objects that are near the text string. This redefinition will cause the radio button shown 
in Figure 3-26 to match the radio button rule. 

(and (circle-p compl) 
(text-p comp2) 
(near-p compl comp2) 
(aligned-p compl comp2 :bottom) 
(horizontal-left-p compl comp2) 
(check-box-width-p compl)) 

Figure 3-25. Test for radio button rule. 

_J_ 
SILK Sketch 

D A *D 

Figure 3-26. A radio button whose components have been drawn far apart. 
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Finally, if the designer draws a widget or graphical object of which SILK has no 
knowledge, the designer can group the primitive components in question so that they 
are not used in an alternative inference later. Currently, SILK has no way of learning 
the new widget. Thoughts about how SILK might learn to recognize new widgets are 
given in Section 3.7. 

3.6.4      Reinferencing Problems 

There are a few user interface problems with respect to SELK's inferencing mecha- 
nism. First, the designer is unable to edit a widget without first breaking it up, losing 
the inference, making the desired changes, and then forcing the system to reinfer. This 
could be solved with a mode that would allow edits inside of a widget and then either 
perform an automatic reinference or force the user to ask for new inferences. 

A related, but more severe problem is the lack of feedback and the inability to 
change a lower level inference when the system uses that inference to make a higher 
level inference. The example in Figure 3-27 illustrates this problem. The designer 
drew the primitive components in the order shown: a radio button followed by a check 
box to the right of it. Unfortunately, the system may mistake the rectangle for a circle 
and thus the check box for a radio button. This will cause SILK to immediately group 
the second radio button together with the first and form a radio button panel. The 
designer is given no chance to correct the mistake since the system will now only offer 
alternative inferences for the group containing the two buttons (and there are no alter- 
natives). 

OMAAyv Q 

Figure 3-27. Radio button and check box potentially mistaken for a radio button panel. 

To fix this mistake, the designer currently needs to break-up the panel using 
either u&group or by selecting Muitipie_objects from the panel of possible widget 
types. Then, the incorrect type can be changed from radio button to check box by 
pressing the New Guess button. A better solution would be to always show the primi- 
tive type of the last primitive drawn. Thus, the designer could change it and cause a 
new widget inference. Another alternative would be to allow New Guess to change the 
last primitive inference when there are no other available widget inferences. 
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3.7      Learning New Rules: A Proposal 
The main problem with SILK's widget inference algorithm is the hard-coded nature of 
the rules. This limits the flexibility of the system in terms of recognizing new ways to 
draw known widgets and supporting new user-defined widgets. This section proposes 
three ways to try to learn new widgets during regular use of the system. All three tech- 
niques assume that the user would select the primitive components in question, give 
the widget a name (which may be the same as an already known widget), and then 
instruct the system to learn a new widget definition or modify an existing one. 

3.7.1      Learning Spatial Definitions 

The first technique involves trying to learn the spatial relationships found between the 
primitive components in a widget using the same algorithms that are used to find these 
relationships when recognizing widgets. These relationships can then be used to add 
new rules to the rule system. For example, SILK could learn the vertical scroll bar test 
shown in Figure 3-19 by noticing that one rectangle contained the other and that the 
containing rectangle was skinny. Since the example may fulfill several graphical rela- 
tionships and features, it may be good to allow the user to indicate which of these rela- 
tionships should be used for recognition (as is done in the Electronic Cocktail Napkin 
[Gross 1994; Gross 1996]). For example, in the scroll bar shown in Figure 3-2, SILK 
notices that in addition to the containment relationship, the two rectangles are a hori- 
zontal sequence (based on their centers). This fact is unimportant to any rule the sys- 
tem should learn from this example. 

The SILK user study (see Chapter 6, "Evaluation") illustrated several situations 
in which SILK's built-in rules could not identify a widget that could easily have been 
recognized by learning spatial relationships. One participant tried to sketch a text field 
that had the field label above the type-in box (see Figure 3-28). The SILK rule for text 
fields requires the field label to be to the left of the type-in box (see Figure 3-29). 
Allowing the user to redefine this rule using the new spatial relationships would allow 
SILK to recognize this non-standard configuration while still supporting the desired 
behavior. A similar situation was encountered by two of the first three participants who 
tried to sketch a button by surrounding a text squiggle with a circle instead of a rectan- 
gle. The hard-coded rule for buttons did not allow this and was changed to prevent this 
problem from occurring with later participants. Again, this situation could have been 
avoided by allowing the designer to add a new rule using spatial relationships. 

Figure 3-28. Text field that is not recognized by SILK. 
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(and (text-p compl) 
(rectangle-p comp2) 
(near-p compl comp2) 
(aligned-p compl comp2 :bottom) 
(horizontal-left-p compl comp2)) 

Figure 3-29. Test for text field rule. 

There are several difficulties in getting this type of learning algorithm to work. 
First, there is a problem of rule conflict. Learning a new rule could cause an older rule 
to become ambiguous. Imagine there were no rules for text field and the rule for check 
box was: text near rectangle. That works fine until the user attempts to add a text 
box. It will be misrecognized as a check box and the user will try to add a new rule. 
The system may give text box the same rule as check box or even more specifically: 
text left of aligned rectangle. This could cause the system to get confused 
when trying to recognize these two widgets. One solution is to point out such rule con- 
flicts and force the user to specify more features to disambiguate the two cases. A 
related problem is making sure that there are enough built-in spatial relationships and 
graphical features to cover most cases, but not too many, as that will complicate the 
interface for picking out the important ones. 

Another problem with trying to learn spatial definitions is in assigning the rule 
confidence values. As was described previously, these values are currently hard-coded 
and their assignment becomes complex as the number of recognized widgets and wid- 
get variations grow. An automated way of learning these values would be preferable to 
hand-picking them. 

3.7.2      Bayesian Belief Networks 

Bayesian belief networks [Pearl 1988; Charniak 1991] may offer an automated way to 
learn better confidence values for SILK's rule system. This method of reasoning uses 
probabilities to try to infer concepts from uncertain information. By noticing how a 
designer corrects the widget inferences made by SILK, the system could adjust its 
probabilities and infer concepts better in the future. In addition, Bayesian networks 
would also offer a way to have the "probability" values returned by Rubine's algorithm 
percolate up into the rule system. Currently, the probabilities are only used to see if the 
gesture is recognized above some basic cut-off value, and then they are thrown away. 
If these values were retained, they could offer more evidence in determining if one 
inference is more likely than another. 
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3.7.3 Neural Networks 

The final technique to consider in learning widgets by example would be neural net- 
works. The advantage of these is that the network determines the important features to 
distinguish the objects being classified, rather than the user or programmer. There are 
two major problems with using neural networks in SILK. The first is figuring out 
which level of data to train the networks on: the pixels making up a widget, the 
Rubine-style features of the objects making up a widget, or something at an even 
higher level. 

A related and even more important problem is the large number of examples nec- 
essary to train a neural network successfully. Neural networks often require thousands 
of examples to classify new examples well. This can be reduced by picking the right 
features to train on. For example, with SILK, the Rubine-style features for each primi- 
tive in the widget may be a good choice to experiment with. The examples can then be 
systematically varied by size in order to multiply the number of examples the trainer 
sees. This technique could be successful for learning the set of built-in widgets by col- 
lecting examples from many designers, but it may prove impossible to make it work 
well when a single designer is trying to extend the system. 

3.7.4 Analogous Widgets 

The three techniques described above would allow SILK to recognize new widgets, 
though the system would know nothing about the widget's behavior unless the 
designer demonstrated it using storyboards (see Chapter 4, "Storyboarding"). Another 
way this problem can be solved is by allowing designers to point out the parts of new 
widgets that are analogous to existing widgets. The system could then try to infer the 
widget behavior from the differences and similarities between the old and new wid- 
gets. This proposed technique is discussed in more detail in Section 8.1.1. 

3.7.5 Explicit Type Specification 

It is possible that any widget recognition algorithm may be too error-prone. Automatic 
recognition of widgets may hurt the design process more than it helps by forcing the 
designer to continually pay attention to and correct the recognizer. If widget recogni- 
tion cannot be improved using the learning methods described above, a more explicit 
widget type or behavioral specification technique may be worth looking into (as 
described in Section 8.1.2). 



3.8. SUMMARY 55 

3.8      Summary 

This chapter presented a widget recognition algorithm that operates in three separate 
stages. First, single-stroke primitive components are recognized by a gesture recog- 
nizer using Rubine's algorithm. Second, a spatial relationship detector looks for rela- 
tionships between the newly recognized primitive and other components in the sketch. 
Finally, these relationships are passed to a rule system that tries to combine related 
components and form new widgets. SILK attaches the pre-defined interactive behavior 
of its best guess to the sketchy components. Since sketched input is inherently ambig- 
uous, several possibilities may be proposed to the user so they can select an alternative 
when SILK makes an incorrect inference. This chapter also proposed several methods 
for learning how to recognize new types of widgets. 
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CHAPTER 4 

Storyboarding 

Rough sketches of interface screens are often tied together by simple storyboarding 
techniques. As in their traditional use in film and animation [Thomas 1981], story- 
boards are used to illustrate important sequences of the design artifact. A designer will 
illustrate sequences of system responses to end-user actions by annotating the sketches 
to indicate these relationships. Figure 4-1 shows a simple sketched storyboard. The 
storyboard illustrates that the rectangle in the drawing window should be rotated when 
the button at the bottom of the screen is clicked. 

Designers often build up storyboards from their sketches by numbering the 
screens, drawing arrows on them, and attaching annotations. In this way a designer can 
describe the major transitions that occur between screens when a user manipulates the 
interface. A desire to iterate quickly leads designers to use hand drawn storyboards for 
this type of work. This technique has been shown to be a powerful tool for designers 
making concept sketches for early visualization [Boyarski 1994]. In fact, although not 

IPS: 

Figure 4-1. A storyboard that illustrates rotating a rectangle upon button presses. 
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specifically asked about storyboards, several of the designers I surveyed (see 
Chapter 2, "Informal Survey of Designers") mentioned using storyboards during the 
early stages of user interface design. Storyboards are a natural representation, they are 
easy to edit, and they can easily be used to simulate functionality without worrying 
about how to implement it. In addition, the success of HyperCard has demonstrated 
that a significant amount of behavior can be constructed just by transitioning to differ- 
ent screens upon button presses. 

SILK storyboards allow the specification of the dynamic behavior between wid- 
gets and the basic behavior of new widgets or application-specific objects. Having a 
dialog box appear when a button is pressed is an example of the dynamic behavior 
between widgets. A designer can illustrate these interface behaviors while the inter- 
faces are still in their rough early stages. The main advantage over paper sketches is 
that SILK allows the storyboards to come alive and permits the designer or test sub- 
jects to exercise the interface in this early, sketchy state. In Run mode, buttons and 
other widgets are active (i.e., they give feedback when clicked), but without story- 
boards they cannot perform any actions. 

This chapter describes how SILK can be used by interface designers to illustrate 
sequencing behaviors. It first describes how difficult it is to illustrate behavior with 
existing tools. Next, it describes the design and implementation of SELK's storyboard- 
ing mechanism. The chapter concludes by exploring some potential extensions to the 
system. 

4.1       Drawbacks of Existing Tools 
When it comes to supporting interaction, existing tools fall short of the ideal. Most 
user interface builders, such as the NeXT Interface Builder and Visual Basic, require 
the use of programming languages in order to specify any interaction beyond that of 
individual widgets. Prototyping tools such as Director and HyperCard allow the 
sequencing of screens, and although they use direct-manipulation methods to specify 
these sequences, these methods lack the fluidity of paper-based storyboarding. To 
review or edit the screen transitions and for anything but the most simple sequences, 
these tools require the designer to traverse a series of complex dialog boxes or use a 
scripting language. Requiring the use of programming or scripting languages is not 
realistic for SILK's target application and audience. Therefore, SILK allows the rapid 
illustration of a significant amount of interaction by sketching alone. 

Due to the lack of good interactive tools, many designers use low-fidelity proto- 
typing techniques [Rettig 1994]. One of the biggest drawbacks to using low-fidelity 
prototypes is the lack of interaction possible between the paper-based design and a 



4.2. VISUAL LANGUAGE 59 

user, who may be one of the designers at this stage. In contrast, SILK performs screen 
transitions automatically in response to a user's actions. This allows more realistic 
testing of rough interface ideas. In addition, rather than being thrown out like paper 
prototypes, these electronic specifications could possibly be used to automatically gen- 
erate code that implements the transitions in the final system (see Section 4.7.2). 

4.2 Visual Language 
A simple model was chosen for SILK's storyboarding language. This visual language 
has two types of objects, screens and arrows. Each screen is a sketch of an interface in 
a particular state. For example, Figure 4-1 illustrates three screens that differ in only 
the orientation of the rectangle in the drawing window. Arrows connect objects con- 
tained in one screen with a second screen. The arrow indicates that when the object in 
the first screen is manipulated (the current model is limited to mouse clicks), the sys- 
tem should display the second screen instead of the first. For example, the arrows in 
Figure 4-1 indicate that when the user clicks on the button at the bottom of the screen, 
the user should see the rectangle in its new (rotated) orientation. 

Using a notation of sketchy marks that are made on the interface sketches is ben- 
eficial since these marks are similar to the types of notations that one might make on a 
whiteboard or a piece of paper when designing an interface. In addition, the same 
visual language is used for both the specification of the behavior and the static repre- 
sentation that can be later viewed and edited by the designer. This static representation 
is natural and the SILK usability test showed that it is easy to use (see Chapter 6, 
"Evaluation"), unlike the hidden and textual representations used by other systems, 
such as HyperCard and Visual Basic. 

4.3 Examples 
SILK storyboards make it easy to illustrate several common interface behaviors. This 
section presents several examples. In Figure 4-1, the designer has illustrated a repeat- 
ing sequence of rectangle rotations. Each time the button is clicked, the rectangle in 
the drawing window rotates 60 degrees. This example also shows that the transitions 
can loop back to the screen they started on. An important point about this example is 
that it shows that a designer's knowledge and creativity allows the illustration of a 
behavior (i.e., rotation) that the underlying tools, SILK and the Garnet toolkit it uses, 
do not even support. 
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Figure 4-2. Make a dialog box appear and disappear when the appropriate button is pressed. 

Figure 4-2 illustrates bringing up a dialog box on top of the sketched drawing 
window. This example is interesting since the designer is able make the dialog box 
opaque so that it hides any objects it may appear over. This is accomplished by first 
grouping the objects making up the dialog box and then selecting Make opa<jue from 
the Arrange menu in the SILK controls window1. This technique can also be used 
for illustrating pop-up menus. An alternative design I considered was to have SILK 
recognize these types of widgets and then set this property automatically. 

Figure 4-3 illustrates a sequence in which the user can select a circle by clicking 
on it. The circle can then either be doubled in size or shrunk in half by clicking on the 
buttons at the bottom of the screen. This example also illustrates the feedback of selec- 
tion handles. It is important to remember that this example does not specify how selec- 
tion or scaling should work in general, but instead illustrates how it might operate. 
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Figure 4-3. Scaling a circle with selection handles. 

1. This is currently unimplemented. The example was created by changing properties of the dialog box using the 
Garnet debugger. 



4.4. SCREEN GRAPHS 61 

Figure 4-4. A partial screen graph for a simple drawing tool. Clicking on a palette item changes 
the state and then clicking on the background creates an object of the correct type. The bottom 

button deletes the object. 

Finally, Figure 4-4 shows how a designer could illustrate the operation of an 
arbitrary palette of tools. In this example the user is able to create any of three objects 
in a drawing window by first clicking on the object in the palette and then clicking in 
the drawing window. The button at the bottom of the window allows the user to delete 
the newly created object. Note that although these examples show the arrows leaving 
widgets, transition arrows can start from any graphical object or even the background. 

4.4      Screen Graphs 

SDLK's storyboarding model implies that a program can be thought of as a graph (see 
Figure 4-4). The nodes of the graph are the different states of the program (i.e., 
screens) and the arcs out of each node represent the end-user actions that cause state 
changes. To fully specify a program, the designer would have to specify the entire 
graph. However, this is not a major drawback of the model, since storyboarding is gen- 
erally used for illustrating important sequences in an interface, rather than for specify- 
ing an entire interface. Section 4.7 contains a discussion of several techniques which 
vastly reduce the amount of work needed to specify more complete screen graphs. 
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The important sequences in an interface can be thought of as partial paths 
through the screen graph of an application. For example, the middle path in Figure 4-4 
illustrates the sequence in which the user creates a rectangle and then deletes it by 
clicking on the delete button. By illustrating a few partial paths, the designer can spec- 
ify enough of an interface for the design team to quickly consider several possible 
interface ideas. 

4.5      Storyboard User Interface 

The system was designed to make specifying sequencing paths easy. The designer 
constructs storyboards by sketching screens in the SILK sketch window as described 
in Chapter 1. Screens can then be copied to the SILK storyboard window using a 
menu command. At this point, the original screen can be modified in the sketch win- 
dow to show how its state might change. After this, the new screen is also copied to the 
storyboard window. Now, the designer can start drawing arrows in the storyboard win- 
dow that indicate screen sequencing, or more screens can be produced. 

The arrows can be drawn from any widget, graphical object (e.g., primitives and 
decorations), or the background, to another screen. Thus, the designer can cause transi- 
tions to occur when the user clicks and releases the mouse button on any of these 
items. The transition is aborted if the mouse-up occurs anywhere outside of the object. 
Each arrow shows an anchor point on the object it was drawn from and an arrowhead 
on the screen it was drawn to. Unlike the arrows in many visual dataflow languages 
[Pictorius 1995] and the wires in CAD tools, SILK's storyboarding arrows are free- 
form. This unconstrained control permits the designer to avoid some of the "rats-nest" 
problems associated with these other systems, where lines cross at 90 degree angles 
and are thus hard to follow. 

4.5.1       Editing Storyboards 

SILK offers several operations to help in the editing of the screens and transitions 
specified in the storyboard. Clicking on a screen or an arrow highlights it in red and 
then the selected screen or arrow can be deleted. Screens can also be cut, copied, or 
pasted in the storyboard window. The entire storyboard can also be cleared. In addi- 
tion, SILK automatically maintains the transitions and thus the legality of their seman- 
tics when screens are removed or new arrows are added. 

Removing a screen can allow arrows to come from or go to a non-existent screen. 
Therefore, when a screen is deleted all arrows coming into or out of that screen are 
also deleted. In addition, removing a screen causes all of the screens after it to move in 
the left to right, top to bottom, screen layout. Thus, SILK redraws all arrows to or from 
the affected screens using straight lines. 
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Adding an arrow may violate the rule that only one arrow is allowed to leave a 
particular object. When this case arises, the old arrow is automatically deleted after the 
new arrow is drawn. Maintaining the original arrow until after the new one is drawn 
helps when the designer is replacing the straight line arrows generated by SILK. 

The SILK usability test (see Section 6.2) showed that designers would like more 
control when editing the storyboard. For example, designers would like to position the 
screens wherever they like, rather than in the sequential order that SILK uses. They 
also wanted a tighter coupling between the storyboard and sketch windows. 

4.5.2 Testing the Interaction 

When the designer is ready to test the specified interaction, she can switch to Run 
mode. At this point, the designer must specify which screen will be the initial screen to 
start the interaction. This is accomplished by selecting a screen in the storyboard win- 
dow and copying it back to the sketch window. Now the designer or an end-user can 
start interacting with the sketch and it will make the proper transitions as defined by 
the visual program displayed in the storyboard window. Each time the user clicks on 
an object that has the anchor of an arrow attached to it, the system will replace the cur- 
rent screen with the screen attached to the arrowhead. For example, the behavior illus- 
trated by Figure 4-1 will show a progression of rectangle rotations when the user 
clicks on the button in the sketch window. 

4.5.3 Feedback 

In order to allow the designer to debug their story boards, we have supplied some feed- 
back mechanisms that are displayed while in Run mode. First, the currently active 
screen (i.e., the one being displayed in the sketch window), is always highlighted in 
the storyboard window. This allows the designer to know the current state of the sys- 
tem. Second, the object that caused the last transition to the current screen is high- 
lighted along with the arrow leading to the current screen. A designer can use these 
mechanisms to help check that her visual program is working properly. Finally, wid- 
gets in the sketch window may supply their own feedback. For example, a button high- 
lights while the mouse is held down over it. 

4.6      Implementation 
SILK's storyboarding model maps into an implementation that is also quite straight- 
forward. Every sketched widget and screen is given a unique ID. When a screen is cop- 
ied from the sketch window to the storyboard window, the objects are copied along 
with their IDs. 
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When the system is put into Run mode, a screen transition table is built by exam- 
ining the arrows in the storyboard along with the objects and screens they connect. For 
each arrow the system creates a transition entry that contains the object's ID along 
with the origination and destination screen IDs. When the user clicks on an object in 
the sketch window, the system checks whether that object has a transition defined on it 
by looking it up by its ID and the ID of the current screen. If a transition is defined, the 
system copies the screen specified by the destination ID to the sketch window. Thus a 
program executes upon each input event by examining the transition table and copying 
the specified screen. 

This implementation could be made more efficient (and exhibit less screen 
flicker) by checking for differences (deltas) between the two screens and storing in the 
transition entry the necessary operators to effect the change. Instead of the outright 
replacement of objects that change, the transition could modify "interesting" object 
parameters, such as: visibility, left, top, width, height, and scale. Then when a transi- 
tion fires, the system would only change parts of the screen rather than make an 
entirely new copy. The interfaces created by designers during the SILK usability test 
(see Appendix "SILK Evaluation Data") exhibit many common objects among the 
screens, thus supporting the use of a delta transition model. 

4.7      Extending Storyboards 

The current model of storyboard sequencing is sufficient for many applications, but 
falls short when the designer wishes to specify a more complete interface. There are 
several ways the basic model can be extended to increase the power of this specifica- 
tion style. 

4.7.1       Parallel Storyboards 

Currently the system supports multiple paths through an interface screen graph (as 
seen in Figure 4-4), but only one of these paths can be followed at a time. An obvious 
extension of this is to allow multiple states (i.e., screens) to be active at the same time, 
but only one in each independent path. An independent path is a sequence of screens 
that cannot be reached from another independent path by following the drawn transi- 
tion arrows forwards or backwards. I term these independent paths, combined with the 
previously discussed difference checking algorithm, parallel storyboards. 

Parallel storyboards would allow partial updates to the current screen in the 
sketch window by combining the differences specified by multiple storyboard screens. 
Thus, the designer could describe separate paths for manipulating different objects, 
displaying the results of the distinct manipulations in the sketch window at the same 
time. For example, the operation of the palette objects in Figure 4-4 could be described 
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by the two paths given in Figure 4-5. Then, an end-user would be able to produce the 
screen shown in Figure 4-6 by creating a rectangle followed by a circle or vice-versa. 

Figure 4-5. Parallel storyboards that allow the creation of circles and rectangles in any order. 

SILK Sketch 

/   /\AM^^ 3 
Figure 4-6. A drawing that could be created with the parallel storyboards defined in Figure 4-5. 
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In the current storyboarding model, the size of the specification grows exponen- 
tially. Parallel storyboards allow the size of the specification to grow as the product of 
the number of active objects (i.e., objects that start transitions) and the number of sup- 
ported operations on them. This is a significant improvement. In the example illus- 
trated in Figure 4-5 there are two active objects (the rectangle and the circle) and one 
operation (create object). 

This design for parallel storyboards is not quite correct - it permits ambiguity. In 
the example illustrated in Figure 4-5, which object should be created if the user first 
clicks on the rectangle palette item, then the circle item, and then in the drawing area? 
To avoid this, the designer needs a way to indicate that the middle screens are a shared 
state that can be active in only one path at a time. Figure 4-7 shows that grouping the 
screens is one way this might be indicated. In addition, there would need to be a rule to 
resolve the conflict when it occurs. For example, when a second path enters the 
grouped states at run time, make the path that reached the state first retreat one state, 
undoing any screen changes it made. Now the example works as expected. When the 
user clicks on the circle palette item, the rectangle selection feedback will be undone 
to indicate that only the circle is selected. 

Figure 4-7. One way to remove the ambiguity in Figure 4-5 - shared state that has two arrows 
leaving on the same event. (Note: the grouped state feedback was added programmatically.) 
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4.7.2      Inferencing Techniques and Code Generation 

Another way in which to make storyboards more expressive is by applying inferencing 
techniques to them. Programming-by-demonstration (PBD) is a technique in which 
one specifies a program by directly operating the user interface [Myers 1992; Cypher 
1993]. The system then tries to infer a program to implement the interaction. SILK's 
storyboarding system is similar to a PBD system. In the sketch window the designer 
specifies the layout and structure of the interface, while in the storyboard window she 
demonstrates possible end-user actions and shows how the layout and structure should 
change in response. 

In the current system there is no inferencing involved. All actions and responses 
must be specified by the designer. Consider the rotation case illustrated in Figure 4-1. 
A PBD system could take the two rotation steps shown and try to infer the amount of 
rotation to apply on any subsequent button press. The PBD system could then indicate 
this inference by replacing the screens in question by one compound screen in which 
the inference is made explicit. Double clicking on the compound screen would display 
the original sequence as drawn. This would save both the designer's time and lots of 
valuable screen space. 

Another application of inferencing is to allow the system to infer that operations 
applied to one type of object may also be applied to other objects. For example, in 
order to support scaling for both rectangles and circles the designer currently needs to 
specify two separate sequences operating on both types of objects. If the system could 
infer that scaling is simply the modification of a parameter of the selected object, then 
one example sequence would allow scaling on all objects. Again, this would save a 
considerable amount of designer time and storyboard space. 

A critical problem with PBD techniques is the lack of a static representation that 
can be later edited. Marquise [Myers 1993] and Smallstar [Halbert 1984] use a textual 
language (a formal programming language in the latter case) to give the user feedback 
about the system's inferences. In addition, scripts in these languages can then be edited 
by the user to change the "program." This solution is not acceptable considering that 
the intended users of SILK are user interface designers who generally do not have pro- 
gramming experience. I believe that SILK's visual notation can be extended to show 
the inferences that a PBD system might make. For example, simple graphical 
attributes could be displayed on top of the storyboard screens to indicate iteration and 
conditionals, as was done in Pursuit [Modugno 1995]. 

It may also be useful to defer much of the inferencing until transformation time, 
thus preserving the fluidity of the sketching and brainstorming phases. At that point, 
PBD might also be used to help construct a call-back skeleton from the transitions. 
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This skeleton could become much more useful if the inference engine was able to gen- 
eralize operations, as in the previously described scaling example. 

4.7.3      Storyboard Space Saving Techniques 

One of the major problems with visual languages is the large amount of screen space 
they require as compared to textual languages. Besides PBD, there are several other 
space-saving techniques that may help overcome this problem. 

The first major problem encountered by designers is the "rat's nest" of arrows 
connecting screens. As an interface gets more and more complex, these arrows become 
hard to follow. This problem is solved in many CAD systems by performing automatic 
routing algorithms. This would be especially useful after moving or deleting screens in 
the storyboard. Another solution is to allow multiple views of the storyboard window. 
For example, a designer should be able to specify that she wishes to only see arrows 
coming into a particular screen, out of a particular screen, or out of a particular object. 
Another view might only show screens that are reachable from the current screen or 
selected arrow. User-controlled routing and editing of free-form arrows, along with 
multiple views, may be enough to solve many arrow related problems. 

The second major problem involves the size of the storyboarding panels. Cur- 
rently when the designer copies a screen to the storyboard window, it is displayed at 
40% of its original size. It may be useful to allow the designer to vary this parameter 
for more control over the space. It may also be nice to automatically vary the scale 
among different panels according to which part of the interface the designer is working 
on. This technique is similar to the use of fisheye views in visualization tools [Furnas 
1986]. 

Another technique for saving storyboarding' space is to only show relevant 
changes to the screens, instead of the entire screens. In the rotation example (see 
Figure 4-1), the second storyboard screen might only show the rotated rectangle with- 
out the palette, window, or button. This is similar to some of the techniques used in 
Chimera [Kurlander 1993] and systems based on graphical rewrite rules. Another way 
to conserve storyboard space is to try to compress multiple changes into a single 
screen. The Pursuit [Modugno 1995] system uses such techniques. Something similar 
could be implemented in SILK if arrows were drawn not just to the next screen, but to 
the object that should be modified by the specified action. Thus, multiple arrows could 
arrive on distinct objects in the same screen to illustrates multiple state changes. 
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4.7.4      Additional Events, Animation, and Conditionals 

In addition to making the storyboards more expressive and compact, there are some 
simple additions that can be made to support more forms of interaction. The only event 
the current system permits is clicking on widgets or graphical objects. SILK could 
allow more complete user interfaces by supporting dragging, drag and drop, double 
clicking, timer events, and typing. In addition, a null event arrow that would match on 
any user event that did not match on the current screen would make error handling eas- 
ier. Allowing arrows to be annotated with event types would allow some of these addi- 
tional events. One way to support this is to have a palette of arrow types in the 
storyboard window (a mouse icon for single click, two mice for double click, a clock 
for timer events, etc.) The palette would allow the designer to select the current mode 
for the arrows drawn in the storyboard window. Arrows of different types would be 
distinguished by distinct colors and possibly line styles. 

The timer event is especially interesting in that it would allow designers to 
quickly mock-up multimedia applications that have animation or video by specifying a 
few key frames that SILK would automatically transition between when the timer 
event occurred. A number of professional designers who have seen SILK requested 
this feature. A simple property sheet would allow changing the time-out on individual 
arrows or the default time-out given by the clock icon. 

Besides supporting these new event types, the current implementation of SILK 
should be extended to support better default behaviors for two of the existing widgets, 
scrolling windows and text fields. Scrolling windows should scroll objects in the win- 
dow by some default amount. Adding the previously described drag event would per- 
mit a custom definition of scrolling using a scroll bar along with the associated 
window and objects. Text fields should allow entering text in the field box by default. 
Adding typing events would also allow a custom definition of this behavior. 

Another limitation of the current model is that it only supports checking that an 
event takes place on a particular object. It would be useful to have a transition that 
occurs conditionally on the object in question being in a particular state. For example, 
the designer may want a mouse click on a check box to only cause a transition if the 
box was previously unchecked. 
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4.8      Summary 

Questionnaires and site visits show that hand-drawn storyboards are a common tool 
used to illustrate behavior. Unlike paper sketches, SILK's electronic storyboards allow 
the designer or test subjects to interact with the sketch before it becomes a finalized 
interface. The current storyboarding model is quite simple and therefore easy to pick 
up and use. If more expressive power is necessary, there are several changes discussed 
in this chapter that could be added, but at a cost of more complexity in the SILK user 
interface. 



CHAPTER 5 

Support for Later Development Stages 

Although SILK was designed to support the early conceptual stages of user interface 
design, a successful tool cannot ignore the later phases through which a design will 
progress. SILK supports the prototyping and implementation stages with two technical 
features: design memory mechanisms for managing different versions of a design 
along with the associated documentation, and screen transformations for passing the 
design off to another tool. This chapter contains a description of these features along 
with a discussion of proposed extensions that can better support the entire user inter- 
face design cycle. 

5.1      Design Memory Mechanisms 
One of the important features of SILK is its support for design memory. Design mem- 
ory refers to any mechanism that allows the designer to manage the documentation 
about the design together with the different versions of the design. Practicing design- 
ers have found that the annotations on design sketches serve as a diary of the design 
process, which are often more valuable to the client than the sketches themselves 
[Boyarski 1994]. Such documentation may include the reasons why a particular design 
decision was made or possibly who made a particular design change. SELK supports 
making and saving this documentation via an annotation layer. 

The designer can annotate a design by either typing or sketching on the annota- 
tion layer (see Figure 5-1). The annotations are rendered in blue and the layer can be 
displayed or hidden with the click of a button in the SILK controls window (see 
Figure 1-17 on page 17). Annotations made on paper can be difficult to store, organize, 
search, and reuse. This is not the case with SILK's electronic annotations. For 
instance, annotations that were made using the keyboard can be searched later using a 
simple search dialog box (see Figure 5-2). 

71 
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Figure 5-1. The annotation layer is displayed on top of the sketch. 
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Figure 5-2. Dialog box for searching annotations on storyboard screens. 
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As in Sketch mode, SILK's Annotate mode supports the full set of editing ges- 
tures and menu commands. None of the marks drawn on the annotation layer are inter- 
preted, though widgets that have been interpreted in the sketch can be pasted to the 
annotation layer. This feature can be used to document widget changes in the annota- 
tion layer by including a copy of the original object. 

SILK also allows a designer to save designs or portions of designs for later use or 
review. The designer can reuse screens by first visually scanning the miniaturized 
screens in the storyboard window to find the proper screen and then copying it to the 
cut buffer. Then, she can open the new design and paste the screen into the new story- 
board. By saving multiple versions of the same design in the one storyboard, the 
designer can also compare these thumbnails on screen. 

5.1.1       Design Memory and Design Management Extensions 

Since design is often a group task, SILK could easily be extended to support multiple 
layers, allowing different members of the design team to create personal annotations. 
This feature could be used to view team members' comments as the design progresses • 
and to also review their comments at a later date. 

Design management could easily be improved. First, the system could be 
extended to display multiple designs from separate design files (e.g., separate story- 
boards) at the same time. This way a designer could make side-by-side comparisons or 
more easily copy portions of one design into a new design. Second, SILK could dis- 
play several designs in a miniaturized format that is representative of the different 
screens in each design so that the designer could quickly search through a directory of 
previously saved designs visually rather than purely by name. Another promising 
search method would be to support visual queries. That is, the designer could sketch a 
screen and query the system for any designs that contain similar screens. Such a mech- 
anism is supported for architectural drawings in the Electronic Cocktail Napkin [Gross 
1994; Gross 1996]. Finally, a more powerful versioning system that supported check- 
in, check-out, display of differences between versions, and roll-back, as with Unix's 
res application, would greatly enhance SILK usefulness for production quality work. 

It might also be important to let designers view a graphical history of how a 
design progressed, both within a version and between versions. One way to do this is 
to use tracing layers [Wong 1993] to view different versions of screens on top of each 
other. Another way is to keep a history of stroke order and allow animations of the 
changes [Genau 1995]. 



74 CHAPTER 5. SUPPORT FOR LATER DEVELOP- 

5.2      Screen Transformations 
In addition to supporting the management of SELK-based designs it is also important 
to support transferring those designs to another tool at the appropriate time in the 
design cycle. When the designer is happy with an interface screen, selecting Trans- 
form from the Recognition menu causes SILK to create a new window, the SILK 

Finished window, and to generate real widgets and graphical objects in this window. 
These widgets can take on the look-and-feel of a standard graphical user interface, 
such as Motif, Windows, or Macintosh. The current version of SILK generates Motif 
widgets that can be copied and then pasted into Gilt [Myers 1991], the Garnet user 
interface builder. Figure 5-3 illustrates the transformed version of the screen illustrated 
in Figure 5-1. 
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Figure 5-3. The Motif transformation of the sketched screen illustrated in Figure 5-1. 

The widgets and objects are positioned in the same locations that they occupied 
in the original sketch. Compound widgets (i.e., pulldown menus, panels of buttons, 
check boxes, and radio buttons) are spaced evenly and treated as one object. Palette 
objects, as well as objects not making up a widget, are transferred in their existing 
polyline form. An interface screen that supports all of the widgets recognized by SILK 
(see Figure 5-4) has been transformed by SILK in Figure 5-5. 
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Figure 5-4. A screen that contains all the widgets recognized by SILK. 
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Figure 5-5. The transformation of the sketch illustrated in Figure 5-4. 



76 CHAPTER 5.   SUPPORT FOR LATER DEVELOP- 

The transformation process is mostly automated, but it requires some guidance 
by the designer to finalize the details of the interface (e.g., textual labels, colors, and 
alignment). If the labels were replaced in the sketch with ASCII text (using the caret 
gesture), this text will be transferred to the new widgets, otherwise they are transferred 
as generic labels. After saving the screens into a Gilt design, programmers can add 
callbacks that include the application-specific code to complete the application. 

5.2.1      Transformation Extensions 

One obvious extension to the current transformation algorithm is to transform all of 
the screens in the storyboard, rather than just the one that is displayed in the SILK 

sketch window. In addition, rather than requiring the designer to copy and paste these 
transformed screens into Gilt, the system should generate the proper Gilt files automat- 
ically. These transformed files should also retain any annotations the designer has 
made on the design. 

Since the types of the widgets are known at transformation time, the process is 
straightforward and is implemented as a large case statement. Instead of generating 
Garnet objects, this code could easily be modified to generate alternative UI widget 
descriptions. For instance, SILK could generate OSF's UIL [Ferguson 1993], 
Microsoft's Visual Basic, HTML (see Chapter 8, "Future Work"), or any other format. 

The hard part about doing the screen transformation correctly comes about when 
the design team tries to go back and forth between the two formats. For example, the 
team could first use SILK, next generate Visual Basic (VB), and then using VB add 
new widgets and associated application code. If at that point the design team decides 
they need to make some changes at the sketch-based level, the new changes will be 
lost. One way to solve this problem is to use auxiliary data structures to keep track of 
new objects and code so that they can be attached later when SILK retransforms the 
interface. This would require modifying the interface building tool (in this case VB) or 
parsing the differences between the original SILK-generated VB file and the newer 
modified file. SILK could then use generic sketchy representations of the new VB-gen- 
erated widgets. It would also be nice for SILK to use any application code that has 
been written. This last feature makes the problem much more difficult to solve. 

Finally, the one area where the transformation process could be significantly 
extended is in trying to make use of the transitions that were drawn on the storyboard. 
Since the transitions only simulate how a program might be implemented, directly 
using the arrows to generate call-backs is a fairly ambiguous process. Generating such 
a code skeleton is a challenging area of research. The arrows could be used to generate 
code if the target language was HTML, which has a one-to-one mapping with SELK's 
transition model (see Section 8.3.1). Section 8.1.3.4 describes how the system might 
use the transition arrows as a demonstration that can be generalized to generate code. 
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5.3      Summary 
Besides allowing designers to create mock-ups of user interfaces, SILK has some sup- 
port for the rest of the design process. In particular, SILK supports making annotations 
on the sketches in order to document the design. In addition, screen transformations 
allow designers to move their SILK sketches to a more appropriate tool, i.e., a user 
interface builder, when the design ideas become more concrete. 
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CHAPTER 6 

Evaluation 

Although there is substantial evidence that an electronic sketching and storyboarding 
tool would be useful for early user interface design, this thesis could only be confirmed 
by building a system and testing it with actual designers. This chapter describes such 
an evaluation of SILK. The chapter starts with a description of the usability test and 
then presents both numerical and descriptive results. This is followed by an overview 
of the engineering changes made as a result of participants using the system. The chap- 
ter finishes with a discussion of the results, which confirm the thesis and show that 
designers see applications where SILK, and in particular electronic storyboarding, 
would be useful in their work. 

6.1      Description of Usability Test 
This section describes the objectives of the usability test, the methodology of the 
study, how participants were selected, the design tasks used, and finally what was mea- 
sured. 

6.1.1      Objectives 

There were three main objectives of the usability test. The first and most important 
objective was to see whether designers could effectively use SILK to design user inter- 
faces. The second objective was to see whether a tool like SILK permits designers to 
communicate a design idea to other members of a design team, particularly engineers. 
Finally, I wanted to see how well SILK performed, both in terms of its recognition 
algorithms and its user interface. 

79 
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6.1.1.1 Design Effectiveness 

The main questions to answer in terms of design effectiveness are whether designers 
can use SILK to produce non-trivial designs and whether SILK supports creativity. 
Non-trivial designs tend to use several screens and offer interactive behavior. Support- 
ing creativity, i.e., the exploration of a wide variety of design ideas, is very important 
in the early stages of design. SILK will be considered to support creativity if designers 
are able to work on more than one idea during the session, rather than fixating on a sin- 
gle design and committing all of their available resources to it. Previous work has 
found that electronic tools encourage designers to fixate on a single design rather than 
exploring several ideas at the start of a design project [Black 1990; Goel 1995]. 

6.1.1.2 Communication Effectiveness 

One of the important tasks in the early stages of design is to communicate a design 
idea to other members of the design team, particularly engineers. Electronic sketching 
and storyboards will be considered effective for communicating design ideas if engi- 
neers are able to understand a design idea after a short discussion, if these discussions 
concentrate on the structure and behavior of the interface, rather than the "look," or if 
designers are able to make design changes in real-time as a result of these discussions. 
An engineer will be said to show understanding of a design idea if they ask critical 
questions that are more than just reactions to what is drawn on the screen. 

6.1.1.3 System Performance 

System performance is a question of how well my implementation of electronic 
sketching works. I wanted to find any problems with the SILK user interface so that I 
could refine it. I also wanted to see whether designers could understand what SILK 
was doing, how easy the system was to learn, and how often the system performed the 
correct operation from the user's point of view. SILK will be considered easy to learn 
if designers are able to use the features that were taught to them in the SILK Tutorial. 
Correct operation is a question of how well the editing gesture, primitive component, 
and widget recognition algorithms work. 

6.1.2      Task Environment and Materials 

The operational conditions, user population, and task domain used were meant to rep- 
resent a typical design environment. In particular, the tasks were performed in a room 
with two computers and a moderate noise level. The users were chosen to be non-nov- 
ices with respect to user interface design (see Section 6.1.4), and the chosen task (see 
Section 6.1.5) was meant to be typical of the design problems a designer may need to 
solve when designing a user interface. 

The participants used an HP Snake Workstation (HP-735) with 92 MB of RAM. 
The workstation ran Unix (HP-UX) and X Windows. The color monitor had a 17" 
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diagonal effective viewing area. The computer used a round, three button, mouse that 
comes standard with this workstation. The system was loaded with Allegro Common 
Lisp and SILK running on top of the Lisp system. In addition, a video camera and 
VCR with digital time stamping capability were used to record the sessions. SILK was 
already running when the participant started the tasks, thus eliminating the need for the 
participant to learn how to start the tools. 

6.1.3      Method 

The method of evaluation was to have each designer perform a set of design tasks. I 
was the experimenter for the test. The test session was targeted to last around 4 hours. 
No time limit on the experiment was enforced, except to encourage wrap-up of the 
post-task engineering discussion. 

For each participant, the session began by having the participant sign consent 
forms (see Appendix Section B.l). Next, the experimenter read aloud some basic 
information about the evaluation (see Appendix Section B.2). The participant was then 
asked to supply some basic demographic data and information about their previous use 
of interface design tools (see Appendix Section B.3). 

The session was broken up into four major components: a short demonstration of 
SILK (the script for this demonstration is included in Appendix Section B.5), a prac- 
tice design task that served as a tutorial for the system, a second design task from 
which measurements were taken, and a post-design discussion with an engineer. 

The practice task was actually a written tutorial with quick reference manual (see 
Appendix D, "SILK Tutorial and Reference") that led the designer through an example 
design task to familiarize them with SILK before the evaluation task. The practice task 
was not counted in the test results, although the amount of time the tutorial took to 
complete was recorded. The participants took a short break after the tutorial. 

All of the participants were then given an identical design problem (see Section 
6.1.5). After finishing this task, an "engineer" who had read a similar task description 
(see Appendix Section B.8) was brought in. The engineers were all CMU School of 
Computer Science doctoral students who did not know the designers beforehand. The 
designer was then asked to describe and demonstrate their designs, and the two were 
encouraged to discuss the designs and possibly make changes. 

Afterwards, the participants were given a short questionnaire to fill out (see 
Appendix Section B.10 and B.ll). The questionnaire, some of which is based on 
[Ravden 1989], tried to gauge whether the user liked the design methodology, whether 
the method would be useful in practice, and also collected any other comments the 
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designers might have had. Finally, the participants were given an information sheet 
that explained the goals of the experiment (see Appendix Section B.12). 

In order to make sure that this test plan was appropriate, three pilot sessions were 
run (using computer science students rather than design students). A few changes to 
the study were made as a result of these pilots (e.g., which variables to measure) and 
several bugs in SILK were fixed. The data from these pilot runs has not been counted 
in the results. 

6.1.4      Participants 

The study used design participants who were intermediate or advanced user interface 
designers. The criteria for deciding on the level of experience was based on whether 
the participant had either been a practicing professional interface designer for more 
than one year (advanced) or if they had taken at least one interface design course that 
required a significant amount of work creating actual interface designs (intermediate). 

If the participant was a novice with respect to user interface design, they would 
have been rejected from the study. No participants met this novice design criteria. Par- 
ticipants who lacked computer experience (i.e., were not familiar with using a com- 
puter, keyboard, or mouse) would also have been rejected from the study. Again, no 
participants met this computer novice criteria. 

The participants were chosen from among the students and staff at Carnegie 
Mellon University. The participants were found by asking members of the community 
to volunteer. The design participants were given $25 for their time. In addition, a prize 
of $100 was offered for the participant who designed the best interface as chosen by a 
CMU Human-Computer Interaction Institute faculty member. The engineering partici- 
pants were recruited by posting to the School of Computer Science electronic bulletin 
board (cmu.cs.scs) and they were given $8 for their time. The rest of this section 
reviews the demographic information supplied by both the designers and the engineers 
who participated in the post-design evaluation. 

6.1.4.1      Designer Demographics 

Table 6-1 summarizes the information supplied by the designers1 at the start of the ses- 
sion. The participants were evenly split along gender lines and had an average age of 
30 years. Four of the six were considered advanced interface designers and two were 

1. Note that the six design participants are numbered from 7 to 17 skipping evens. This is because each session 
used two participants (a designer and an engineer) and there were three earlier pilot experiments. 
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Designer Demographics 

participant 7 9        i         11 13 15 17 mean   median      % yes 
age 21 29:                   41 33 21 33 29.7 31.0: 
sex Male Female!           Female Female Male Male '   50% male 

graduate program? no yes                  yes yes no N/A !                              60% 
i 

major 
industrial 

design 

HCI- 
interaction 

design 

communication, 
planning, & 

design 

HCI- 
interaction 

design Hd design 
years professional Ul 

design experience 0.25 
i 

1.25!                       0 2 2.5 5 1.8 
i 

1.61 
advanced?             ! no yes!                 no yes yes yes !             67% 

taken Ul design project 
courses? yes yes!                 yes yes yes no !            83% 

Ul tools used:          !                                  j                       ! i 
HyperCard? no noi                  no no yes yes I             33% 

Director? yes yes!                yes yes yes yes 100% 
Visual BASIC?! yes no!                  no no yes no !                i             33% 

HTML?| no no!                  no no yes yes '                I             33% 
C++ or Java? no no;                  no yes yes no !             33% 

used drawing/painting   j 
programs? yes 

i 

I 
yesl                 yes yes yes yes 100% 

read HCI books? yes yes i                  no yes yes yes I                i             83% 

Table 6-1. Demographic information and previous design experience of design participants. 

considered intermediate designers. Participant 17 was a practicing interface designer 
with a degree in design, while the remaining five participants were design students. 
Three of the students were enrolled in graduate design programs and the others were 
undergraduates taking an HCI or design major. All of the students had taken Ul design 
courses that required a major design project as part of the course and most of the stu- 
dents also had some professional work experience performing interface design. 

All of the participants claimed to have used Director for Ul design, whereas only 
a third mentioned using each of HyperCard, Visual BASIC, HTML, or a programming 
language like C++ or Java. This seems consistent with the results of the informal 
design survey (see Section 2.2.2.1). All of the participants had used drawing programs 
(most commonly citing Photoshop and Illustrator). In addition, five of the six partici- 
pants had read some HCI books. None of the design participants were familiar with 
SILK. 

6.1.4.2      Engineer Demographics 

Table 6-2 summarizes the demographic information supplied by the engineers. All but 
one were male and they had an average age of 27 years. They were all graduate stu- 
dents, four in computer science, one in robotics, and one in language technology. All 
but one had professional programming experience with an overall average of four 
years. 
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Engineer Demographics 

participant 8 10                 12         i       14       ' 16 18 mean I median !     % yes 
age 26! 33!                   25!              27! 25 25 26.8!       25.5! 
sex Male! Female;                Male!           Malej Male Male i 83% male 

graduate program? yes! yes;                 yes!             yes! yes yes 100% 

major CS' 
language! 

robotics!        technoloqy                 CS; CS CS 67% CS 

years professional 
programming experience 4i 

I                              :                        : 
I                              I                        I 

9-                     0i                 2! 2 7 4.0 3.0 
taken Ul design project 

courses? no! 
|                         i                    i 

no                  no              no' no no 
i 

0% 
Ul tools used:          i              i                 ! !           ! 

HyperCard? yesi no;                  no!             noi no no i                !             17% 
Director? no! no;                  no!             no: no no i            !           o% 

Visual BASIC? yes! no                 yes!             no! no no '               I            33% 
Tcl/Tk? yes1 yes:                  no              no no no !               :            33% 
Other? yes1 yes I                   no               no i no no I               i            33% 

read HCI books? yes! no                     no                no! no no !                              17% 

Table 6-2. Demographic information and previous design experience of engineering 
participants. 

None of the engineers had taken a Ul design course and only one had read an 
HCI book. Unlike the designers, none of the engineers had ever used Director and only 
one had used HyperCard. Two of the engineers had used Visual Basic and two had 
used Tcl/Tk [Ousterhout 1991]. Three of the engineers claimed to have never used a 
Ul design or building tool. 

6.1.5 Design Task 

The task given to the designers was based on an interface design/evaluation problem 
given in Nielsen's Usability Engineering [Nielson 1993, pp. 273-275]. Two of the par- 
ticipants claimed to have read parts of this book, although neither had seen the exercise 
in the back. The participants were asked to design an interface to a weather informa- 
tion system designed for travelers. The system was to provide information about the 
weather for the current day and to give weather predictions for the next two days. The 
designers were told that the goal for the design task was to explore the possible design 
space and eventually present several good alternatives to the rest of their design team 
or a client (see Appendix Section B.7 for the exact task description). 

6.1.6 Test Measures 

In order to achieve the objectives given in Section 6.1.1, the measurements listed 
below were taken for each design session by observing the participant's actions, auto- 
matically logging events in SILK, video taping, and having the participants fill out a 
post-evaluation questionnaire (see Appendix Section B.10). The measures are listed 
under the objective they were meant to help determine. 
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Design Effectiveness: 

•The number of different designs produced. 

•The complexity of the designs (in terms of number of screens and transitions). 

•The amount of finished vs. sketchy text in the final designs. 

•Were the designs restricted to the built-in widgets? 

•Was run mode used while designing the interface? 

•What the designer thought about SILK as a design tool compared to other tools. 

•What the designer thought were the best and worst aspects of SILK. 

•The amount of time to complete the task, starting from when the task description 
was given to the designer and ending when the designer said they were finished. 

Communication Effectiveness: 

•Did the engineer ask critical questions in the post-design discussion that indi- 
cated an understanding of the design ideas? 

•Did the design discussion include issues of structure and behavior? 

•Did the designer make real-time changes to a design as a result of the discussion? 

•Was the storyboard used for testing the interface during the discussion? 

•Was the storyboard used to illustrate the overall structure during the discussion? 

System Performance: 

•The number of times SILK made a mistake, i.e., the system inferred a widget or 
gesture incorrectly. A more exact definition of this is given in Section 6.2.3.1. 

•How well the designer thought the gesture recognition worked. 

•Usability problems the designer had with SILK (both observed and reported). 

•How long the designer took to work through the SILK tutorial. 

•The designer's impression of SDLK's overall performance. 

As SILK is an experimental system, it occasionally crashed. For all time-based 
metrics, I subtracted the time it took to bring the system back up in the state it had 
been before the crash. The raw time data is included in Appendix Section C.3. Note 
that a verbal protocol was not used, but I recorded any comments/critical incidents the 
participants made while performing the tutorial and the design task. 
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6.2      Results 
The results of the study are given in terms of the three major objectives discussed in Sec- 
tion 6.1.1. These results include numerical results (i.e., recognition accuracy and design 
and session characterizations)2, descriptive observations3, and the in-session and post- 
evaluation comments made by the participants4. These results show that SILK was an 
effective tool for interface design, the tool also provided an effective way of communicat- 
ing design ideas to engineers, and the system was not too hard to learn, although its imple- 
mentation and performance could be improved in several areas. 

6.2.1      Design Effectiveness 

The design sessions were successful at showing that SILK could be used effectively to 
design user interfaces. This section first characterizes the sketches produced during the 
sessions to illustrate that these designs are non-trivial and that the designers did not fixate 
on a single design idea. It then discusses the sessions themselves and describes how the 
designer's took advantage of SILK's features and what their reactions were to these fea- 
tures. Overall, the designers felt that SILK's "ability to prototype screen-based interac- 
tions is GREAT," but that the tool needed better support for visual effects (such as type and 
color) and more support for non-standard interactions. The section concludes with a sum- 
mary of these missing design features. 

6.2.1.1      Characterization of Designs Produced 

The usability test produced information on the types of designs produced and how long it 
took to create them. This data is summarized in Table 6-3. The data shows that the design- 
ers each spent about 1.5 hours on the task and on average they came up with two different 
designs. The designs varied, both between designers and for an individual designer 
(although the designs for an individual designer often contained elements from a previous 
design iteration). Figure 6-1 illustrates two different designs by participant 7. Although 
vastly different, both designs use a table to display a multi-day weather forecast. 

2. All of the numerical results refer to the design task, which was performed after completing the tutorial. 

3. The observations are a result of notes I took during the experiment and after reviewing videotapes of the sessions. 
The observations cover all three phases of the experiment: the tutorial, the design task, and the post-design engineer- 
ing review. 

4. The complete set of answers to the post-evaluation questionnaire are reproduced in Appendix Section C.5. 
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Task and Design Characteristics 

participant 7 9 1 1 13 15 17 mean median         stdev 
task time 1:42 2:08 1:18 1:13 1:37 1:39 1:36 1:38 0:19 
#designs 2 2 1 2 3 2 2.0 2.0 0.6 
#screens 9 17 2 14 21 9 12.0 11.5 6.8 

«transitions 20 38 0 30 81 15 30.7 25.0 27.9 
screens / 

design 4.5 8.5 2.0 7.0 7.0 4.5 5.6 5.8 2.4 
transitions / 

screen 2.2 2.2 0.0 2.1 3.9 1.7 2.0 2.2 1.2 

Table 6-3. Task time and summary of characteristics of designs produced. 

:;- SILK Slorybord 

TRAVELwvathaE          Daily I 

ToBorroW*  WMthar  for 
Piteaburoh i«i <'""   ";j 

V^"**"*""»*"   "  . 
I^^^S^",; 
^^,—^_>-^> i > 

-3BCT£ 
V.   Sh<^tH^ Fore.« 

J^*Hinfli J     \    OULA \ 

TRAVELwMCh»_ _        ^     5D«y ForcMtl 

;.     .; ris" r'^rZr * 
if--; — "■*■■-■- [    „^.„   j    ^w    i 

\<—:i--: 
jLsÜfeinga ± D»il$Srt«th.r   Co«" 

Figure 6-1. The two designs produced by participant 7 during the task. 
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SILK Slorybord t 

Figure 6-2. One of two designs produced by participant 13. 

Figure 6-2 shows one design from participant 13. In contrast to participant 7's 
designs, this design uses a textual overlay on top of the map to display the weather 
conditions. All of the designs are shown in Appendix Section C.4. This appendix also 
includes the design changes made during the engineering discussions . 

The designs used almost six different screens on average and there was an aver- 
age of two transitions per screen. Two transitions per screen represents a relatively 
small amount of interaction per screen as compared to a real interface, but it is enough 
to support more than the simple linear screen flipping easily achieved with a tool like 
Director. The designers typically used the storyboards to illustrate a few important 
sequences. It is interesting to note that the tutorial used a similar amount of interaction: 
four screens with an average of two transitions per screen 

Participant 9's designs illustrate that using a large number of screens is indeed 
manageable (see Figure 6-3). Participant 15's designs illustrate that too many transi- 
tions on each such screen becomes messy and hard to understand (see Figure 6-4). 
This particular design had so many transitions (almost four per screen) because the 
designer chose to perform error handling for cases where the end-user did not input a 
time and date or if the end-user chose geographical regions that had no weather data. 

5. The numerical results presented in this chapter do not include the changes made during these discussions. 
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Figure 6-3. Participant 9's second design shows that a large number of screens is manageable. 

Figure 6-4. The second design by participant 15 shows that a large number of transitions per 
screen (in this case, almost 4 transitions/screen) can be hard to manage and understand. 
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SILK Storyboard \m\ 
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Figure 6-5. The single design produced by participant 11. Note the small number of screens and 
the lack of any transition arrows. 

Note that participant 11, who had considerable difficulty with the SILK user 
interface during the tutorial, created only one design and chose to use only two 
screens, no interactive widgets, and no transitions between the screens (see Figure 6- 
5). I believe this was due to this designer's difficulty using a two-button mouse (she 
was used to a Macintosh) and to some problems in the interaction mechanism supplied 
by Garnet for moving objects (as described in Section 1.4), which requires dragging 
on a "drag" handle rather than on the object itself. These UI problems led to this 
designer's frustration and a poor understanding of SILK's storyboarding model. 

Four of the six designers added interaction for objects other than the built-in wid- 
gets. This interaction was offered on custom interactive maps, tables of data, and 
iconic buttons, and is another sign that the designs produced are non-trivial in nature. 
This, together with the observation that the designs produced by each designer varied, 
confirms the hypothesis that SILK supports creativity in the early stages of design. 

Design Rankings 

The designs were ranked by a faculty member in the Human-Computer Interaction 
Institute at CMU. The following factors were considered: creativity, simplicity, func- 
tionality, and visual appeal. In terms of functionality, the judge looked for designs that 
supported simultaneous forecasts, a representation of the weather on the map, and a 
graphical location selection method. Table 6-4 shows the rankings for each design. 
The modified designs produced during the engineering discussions were not included 
in the judging. One interesting item to note is that for the five designers who produced 
more than one design, all but one produced a higher ranked design on their second 
attempt. The winning design, participant 13's second, is shown in Figure 6-6. 
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Design Rankings 

design 
(desiqner-version) 7-1 7-2       9-1 9-2 11-1 

|                          i 

13-1     13-2    15-1 
i 

15-2 I 15-3 17-1 17-2 
ranking 5 4l         9i         2|        12!       10!         1|         8 3'         7!         6!       11 

Table 6-4. Rankings of designs produced during the usability test (a ranking of 1 is best). 

Figure 6-6. Participant 13's second design was judged to be the best of the twelve considered. 
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6.2.1.2      Characterization of Design Sessions 

The designers took advantage of many of SILK's features to achieve this design cre- 
ativity and effectiveness. In particular, the roughness of the medium successfully sup- 
ported both creative brainstorming and iterative refinement. The designers also took 
advantage of the editing capabilities of the tool and the interaction provided by story- 
boards. SILK's automatic widget recognition was appreciated by some, but often got 
in the way. In response to this problem, the designers made a liberal use of Decorate 
mode to create both static decorations and non-standard interactive objects. 

Creative Design and Iterative Refinement 

Overall, the designers were fairly positive about SILK as a tool for early creative 
design. It was described as an "excellent 1st draft tool" that "would be good for novice 
interface designers" and "useful for quickly structuring information." A few of the 
designers still "would have liked using pencil and paper" but found that SILK was in 
many ways similar to paper. One designer said she "saw missing pieces [in the design] 
as I was working, which is the same way it works using paper. That's good!" 

One important observation of the experiment was that the participants tended to 
leave parts of the interface in an especially rough and ambiguous state. One example 
of this ambiguity was that the designers did not spend much effort trying to align 
objects exactly. They would put things roughly where they wanted them and move on 
with the design. In addition, text was often left in its "squiggly" form or handwritten. 
These objects were left rough until the end or when more details became known. In 
fact, all but one of the designers had some squiggles or handwritten text in all of their 
final designs. Approximately 29% of the text strings in the final designs were either 
squiggles or handwritten text (see Table C-4 on page 175). I observed that in most 
cases the typed text started out as a squiggle that was later replaced with the finished 
text. This is a good example of iterative refinement. 

The designers confirmed these observations when asked to discuss the features 
of SILK that made it better than HyperCard and Director. Three of the six designers 
said they liked the roughness or paper-like sketching that SILK provides. They appre- 
ciated the "ability to be fast and sloppy" and the "way it remains sketchy." Another 
said that the SILK "is great for giving the idea of a progression through a program 
without getting into the details of the visual design. Often with tools like Director the 
high level of visual detail misleads people to thinking more about the visual refinement 
rather than the interaction." These observations and comments confirm the hypothesis 
that an electronic sketching tool leads designers to focus on the overall interaction and 
structure rather than on the detailed look-and-feel. 
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Editing 

A second key observation was that most of the participants used cut, copy, and paste in 
order to reuse widgets or portions of screens. In addition, they used these editing capa- 
bilities to revise individual designs as they went. For example, participant 9 changed a 
button panel to a radio button panel in the middle of a design. This editing capability is 
something that users expect from any computer-based tool, but is not easy to do with 
paper. These editing features are another win for electronic sketches over paper-based 
sketches. 

Interaction and Structural Overview 

Another important hypothesized advantage of SILK over paper is the interaction it 
provides for testing the design. One designer wrote that SILK was "as quick as paper 
sketching and provides a basis for interaction." All but one of the designers took 
advantage of this interaction by using transitions in their storyboards. Generally, the 
designers took advantage of Run mode to test their design towards the end of their 
work on a particular design. After running it, they would often notice that they had 
either left out necessary transitions, objects, or screens. They would then make the 
necessary changes and test it again. One designer said she "liked the ease with which 
you could test the interaction - it's a very tight loop." Another commented, "the story- 
board was nice - being able to draw arrows to indicate links was very fast." The 
designers appreciated that the "storyboard view... is not only sequential (like movies)." 

Storyboards also have the advantage of permitting designers to illustrate behav- 
ior that the underlying tools do not directly support. Participants 9 and 15 confirmed 
this advantage by repeatedly using Decorate mode to draw their own state feedback on 
radio buttons. Although SILK offers feedback for these widgets, the state of the feed- 
back is not saved between screen transitions. These designers had no problem seeing 
how to use the storyboard transition model to implement the correct behavior. Partici- 
pant 9 also implemented feedback for selecting columns from a table (i.e., she created 
a new interactive widget). 

Besides easily illustrating behavior in the storyboard, the designers liked the 
ability to "see and edit the storyboard" and noted that a "view of information the users 
need can be explored quickly" with SILK. Even participant 11, who had extreme diffi- 
culties, saw the importance of "frame to frame" sequencing. Another wrote, "better 
than Director - the linking with drawings rather than Lingo is excellent. Also you can 
see right away what is going on." 

This interaction and navigation via storyboards were the features of SILK that 
the designers kept referring to in their spoken and written comments. In fact, five out 
of the six designers mentioned storyboarding as the advantage of SILK over Director 
and HyperCard. 
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Widget Recognition 

Although all but one of the designers used SILK's built-in widgets in their designs, the 
recognition accuracy was low enough to be a hindrance. One designer felt that the 
"widget detection and sketching allows for fast low level interaction," but I observed 
that many of the participants became frustrated when faced with repeated recognition 
errors. Section 6.2.3.1 discusses the recognition performance in more detail. 

Decorate Mode 

It was interesting to see which features the designers used that were not covered in the 
tutorial. For instance, the designers made liberal use of Decorate mode for static 
objects, such as the maps and weather information commonly sketched during the 
task. Although Decorate mode was shown in the pre-tutorial demonstration, it was not 
used in the tutorial. Almost all of the designers started using it on their own. This could 
indicate they found it useful for providing a second color or as a way to turn inferenc- 
ing off. The participants rarely used widgets that were in the quick reference manual, 
but not covered in the tutorial. For example, one user simulated her own pulldown 
menus, but did not use the SILK defined ones. Others used a mixture of Decorate and 
Sketch mode to illustrate widgets not directly supported by SILK, such as scrolling list 
boxes (participant 9) and tables (see participant 7's designs in Figure 6-1). Similarly, 
two designers used Annotate mode to document their designs, even though this was 
not shown in the demonstration or tutorial. 

6.2.1.3       Missing Features 

Besides improving the performance of the system (see Section 6.2.3), the designers 
felt that SILK needed to support more dynamic affects, such as "sprites," "roll overs, 
perceptual cues, and movie-like transitions." In addition, several designers mentioned 
problems manipulating the objects, a need for multiple text sizes and colors in Deco- 
rate mode, and a way to visualize the links as they "got messy and were hard to fol- 
low." Two designers hinted that a storyboarding model that combined the sketch and 
storyboard windows and allowed drag and drop would improve SILK. One wanted a 
way to share objects between the screens so that one editing change could be reflected 
in several screens. Another commented that it would be nice if storyboards could be 
"ported to/edited in Director/Hypercard." 

Despite missing these features, the designs produced and the techniques used 
during the sessions illustrate that SILK was still an effective tool for designing user 
interfaces in the early stages of design. One designer summed it up well by saying that 
SILK "works like pencil and paper; is simple, [and storyboards] show logic of naviga- 
tion." 
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6.2.2      Communication Effectiveness 

The post-design engineering review illustrated that SILK makes it easy for designers 
and engineers to discuss a design and demo it, while not getting caught up in the 
details of the look. The scaled-down size of the screens in the storyboard encouraged 
lots of pointing to the different screens, permitting a productive discussion of the over- 
all design. 

Table 6-5 summarizes what occurred during the post-design discussion. Three of 
the designers used the storyboard during the discussion in order to illustrate the overall 
structure of the design. All of the participants, with the exception of participant 11, 
used Run mode to exercise the interface during the design review. One of the designers 
permitted the engineer test the interface. Even though participant 11 had no transitions 
in her design, she was able to use the storyboard by repeatedly copying screens to the 
sketch window to describe her "quick solution." 

Engineering Discussion 

question / participants 7 & 8 : 9 & 10     11  & 12 ; 3 & 14 15 & 16 i 17 & 18 % yes 
enqineer asked critical questions? yes!        yes!            no! N/A: yes yes 67% 
asked questions on structure & behavior? yes'        yes           yes N/A! yes yes 83% 
made real-time chanqes? yes           no!             noi noi yes yes 50% 
storyboard used to test? yes1        yes!             no! yes; yes: yes 83% 
storyboard used to illustrate structure? yes;          no'           yesi N/Ai no! yes 50% 

'                \                   \                   \                   ': 
67% successful communication of idea? yes:         yes!             no N/A yes: yes 

Table 6-5. Characteristics of the post-design engineering discussion. Note that the data for 
participants 13 & 14 is incomplete as the video tape ofthat discussion was not viewable. 

Four of six of the engineers asked critical questions. For example, participant 8 
(engineer) noted that participant 7's use of a calendar (see the top design in Figure 6-1) 
to allow the retrieval of old weather reports was a bad idea. He said, "you are really 
going out of your way to provide this weather log... It is constraining your design and 
making it really hard to do the common case." In the next design session, participant 
10 (engineer) asked about navigation; "what if I want to pop from here to another city 
altogether. What is the most direct way to do it? To a city that is not on the map, say in 
Arizona?" These questions and comments illustrate that the engineers understood the 
interface designs and were looking for places where the ideas may have needed more 
thought. I observed that these conversations concentrated on the structure and func- 
tionality provided by the interface, rather than on the visual details. 
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Finally, half of the designers made real-time changes to their design during the 
engineering discussions. For example, participant 7 used the feedback from the engi- 
neer to rapidly modify his first design. The engineer commented that the original 
design (see the top design in Figure 6-1) required too many mouse clicks to get the 
desired weather information. The changes involved combining several screens, thus 
compressing a five screen design down to a three screen design (see Figure 6-7). The 
engineer and designer discussed which changes to make during a 15 minute conversa- 
tion. The changes included deleting objects, resizing objects, moving objects between 
screens, designing new objects, and making new screen transitions. These revisions 
took under five minutes to make, so they could be done while the engineer was 
present. These examples show that SILK successfully achieved the objective of allow- 
ing designers to effectively communicate a design idea to other members of a design 
team. 

.iSILKStwyboird^ ±M 
Edit  Sketch 

.\_.^S»pC«">"i'^'-,'j' 

Figure 6-7. Revision of participant 7's first design made during engineering discussion. 

6.2.3       System Performance 

Overall, the designers were fairly positive about SILK (rating its performance at 6.2 on 
a scale from 0 to 10), and mainly criticized it for specifics of the implementation and 
the "UI of the tool itself." In addition to uncovering several bugs in the system, the 
usability test brought to light some problems with the recognition algorithms (for ges- 
tures, primitive components, and widgets) and with SILK's user interface in general. 

6.2.3.1      Recognition Accuracy 

SILK performs inferencing at three different levels: editing gesture recognition, primi- 
tive recognition, and widget recognition. This section analyzes each of these processes 
separately and reports the level of accuracy SILK achieved. Due to the lack of infor- 
mation on the test subjects intentions while drawing, all of these metrics have some 
amount of ambiguity, but are still reported here to give an estimation for how well the 
system performs in practice. 
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Editing Gesture Recognition 

Since the current implementation of SILK does not offer the user a way to correct mis- 
recognized editing gestures, there is no way of knowing when SILK interpreted an 
editing gesture incorrectly. This could be estimated by a more thorough review of the 
videotapes combined with an attempt at inferring the participants intent. The alterna- 
tive is to use the information SILK does record. The system reports whether a gesture 
was classified or was found to be too ambiguous and thus unrecognized. Given these 
constraints, this section reports the percentage of editing gestures that were classified. 
This is an upper bound on the actual recognition rate, since some gestures may have 
been misclassified rather than unrecognized. Thus, the classification rate is given by: 

r = 
e — u 

Where e = total number of editing gestures drawn 
u = number of unrecognized editing gestures 

The data collected during the design task is given in Table 6-6. This table shows 
that the participants had a mean recognition rate of about 89%. This is in contrast to a 
rate of 82% achieved during the tutorial (see Table C-3 on page' 174). This difference 
may not be significant6 or may be attributed to the user learning how to effectively 
draw the gestures in order to achieve a higher recognition rate. This rate is in line with 
the 92% rate Rubine found in a single participant test of his single-stroke gesture rec- 
ognition algorithm using a classifier that was not trained by the participant [Rubine 
1991b]. If the participant were given a chance to explicitly train the recognizer or if the 
system were able to learn how a particular participant drew their editing gestures, this 
rate might improve to somewhere above 95%. As gestures are not as easy to draw with 
a mouse, this rate might also improve with the use of a stylus. 

Editing Gesture Recognition 

participant 7 9        1       11       I       13      i       15      I       17 mean    ! median   ! stdev 
«editing gestures 67 139 63l          119 1511             78 1031 99 38 

#unrecoqnized 3 17 8l               8 34 7 13| 
88.7% 

8: 
89.4% 

11 
6.3% recognition rate 95.5% 87.8% 87.3% I      93.3% 77.5% 91.0% 

Table 6-6. Editing gesture recognition data for design task. 

6. The small number of data points makes it difficult to draw any statistical conclusions with a high degree of con- 
fidence. 
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Surprisingly, five of the six designers stated that the editing gesture recognition 
worked "well" or "OK". Some did comment that the system does better if the gestures 
are drawn in a particular direction and that certain gestures did not work well for them. 
Several of the designers experienced problems with different editing gestures: some 
had problems with group, some with text insert (caret), and some with delete. The 
main problem was that the subjects drew these in directions or orientations that were 
different than those recommended in the tutorial (see Figure D-4 on page 203). A sim- 
ple beep did not appear to give enough feedback when these gestures were unrecog- 
nized. These problems could be alleviated by having a button panel that gives feedback 
on the recognition results and by allowing corrections and on-the-fly learning as is 
done with the primitive component recognizer. 

Primitive Recognition 

Unlike with editing gestures, SILK does permit the user to correct mistakes made by 
the primitive component gesture recognizer. In fact, as described in Section 3.2.2, 
these corrections are used to improve the recognizer as the system is used. In calculat- 
ing the primitive recognition rate, only user-initiated corrections are considered errors. 
Therefore, the primitive recognition rate for the primitive recognizer is given by: 

Where p = total number of primitives drawn 
c = number of primitive corrections 

It is still possible that the recognizer will either misclassify primitives or label 
them unrecognized, but the user may not care and thus choose not to correct the sys- 
tem, so these are not counted as errors. These "don't care" primitives tend to occur 
when the designer has drawn static graphics that are not part of widgets (without using 
Decorate mode). Many of these misrecognized and unrecognized gestures can then be 
considered correct inferences. Therefore, the following results represent an upper 
bound on how well SILK actually identified the intended primitive. 

The SILK usability test produced the results given in Table 6-7. These results 
show that SILK correctly recognized the users's primitive components 93% of the 
time. This is in contrast to the rate of 89% achieved during the tutorial (see Table C-3 
on page 174). These recognition rates are quite encouraging, though they might also 
be improved by using a stylus and tablet. Adding a similar mechanism, i.e., visible 
feedback with corrections and learning, to the editing gesture recognizer seems to be a 
promising change to make in the system. 
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Primitive Component Recognition 

participant 7 9               11       ;       13      !       15             17 mean median stdev 

«primitives 120! 102 40;             55:           123 114 92 108: 36 
«unrecognized 21! 20 20;            12:            13 38 21 20! 9 
«corrections 9! 8 3!               0!             15 7 7 

93.1% 
8| 

92.5% 
5 

3.9% recognition rate 92.5%! 92.2%!       92.5% i    100.0%:      87.8% 93.9% 

Table 6-7. Primitive component recognition data for design task. 

I also attempted to measure how much better this recognizer became by learning 
while in use. Therefore, the results of a non-learning recognizer were recorded simul- 
taneously. The non-learning primitive recognizer was assumed to be in error if its 
result did not agree with the learning recognizer. This assumption would later be 
reversed if the designer corrected the system and the correction agreed with the origi- 
nal inference of the non-learning recognizer. This measurement showed that the non- 
learning recognizer was correct only 72% of the time. However, these results are not 
very accurate. The non-learning recognizer is unfairly penalized by the assumption 
that the learning recognizer was right if the user did not correct it. If a "don't care" 
primitive is classified differently by the learning and non-learning recognizers, this 
measurement technique incorrectly assumes that the non-learning recognizer was in 
error. 

Poor feedback of primitive component inference results was responsible for most 
of the confusion designers experienced with SILK's widget recognition algorithm. The 
designers repeatedly failed to notice that one of the primitive components they wanted 
grouped into a widget had earlier been misrecognized. They became confused when 
repeated new guess, group, and ungroup operations were not helpful. One way to offer 
better recognition feedback is to flash the primitive type or a rectified version of the 
primitive on top of the sketch. This problem may also be alleviated in actual use if the 
primitive recognizer continues to improve with training. One obstacle to this improve- 
ment during the experiment was the fact that some participants had difficulty remem- 
bering to correct primitive recognition errors. Thus, another potential solution is to 
have the new guess button cause new primitive inferences, rather than only causing 
new widget inferences. 

Widget Recognition 

The most important result, and possibly the hardest to measure, is how well SILK rec- 
ognizes widgets. Some of the problems are similar to those discussed above for primi- 
tive recognition. For example, we cannot know which inferences are made on widgets 
that the designer does not care about. Another problem occurs when the designer 
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forces a new inference (via the New Guess button) on an object that cannot possibly be 
one of the widgets recognized by SILK. Is that an error? Both of these problems relate 
to not knowing the designer's intentions. 

In assessing the performance of the widget recognizer, there are three cases that 
must be considered: 

•The designer draws the last piece of a widget and SILK proposes a widget type. 

•The designer draws the last piece of a widget and SILK proposes nothing. 

•The designer selects an object or multiple objects and requests a widget guess. 

In the first case the designer can accept the proposed inference, click on an alter- 
native if there are any, press the New Guess button to force a new inference, or break 
up the combined object. The object can be broken up by selecting the Multiple- 
objects alternative or by selecting ungroup from the Arrange menu. Therefore, each 
time SILK proposes a widget type, the system keeps track of which option the user 
takes. It is assumed that an inference was accepted if the designer did not choose one 
of the other options either immediately or at a later point in time. 

In the second case, where SILK proposes nothing, there is no data for the system 
to record. If the designer really does desire an inference, she may select the object and 
click on the New Guess button. Therefore the second and third cases can be combined 
as far as measurements go. Note that the third case can result in either of the first two 
cases, that is, SILK may or may not make an inference. Given these possible scenarios, 
there are several results to report: 

• The number of times SILK makes a first inference on a set of objects and how 
often that inference is not accepted. When it is not accepted, either immediately 
or later, we can report how often the designer tries to repair these inference 
errors7 by selecting an alternative, clicking on New Guess, or breaking up the 
object. 

•The average number of correcting operations (selecting an alternative, clicking 
on New Guess, or breaking up the object) per inference error. This gives an indi- 
cation of how many operations it takes to fix an inference or how long until the 
user gives up. 

•How often the user explicitly selects an object, asks for an inference, and either 
gets one or not. This gives an estimation of how often the user must force the sys- 
tem to give an inference. If an inference is made, how well the system did is 
reported by the above inference calculation. 

7. Only the first correction is considered an error. Nor do repeated clicks on New Guess count as new inferences, 
unless the designer cycles past Multiple_Objects to a new inference. 
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The value for the number of times the designer breaks up an object gives an esti- 
mation of how often the system is picking the wrong objects altogether or inferencing 
when it should not. One common exception to this was seen in the sessions when the 
subject broke up text fields in order to reposition the newly typed text that had replaced 
the original text squiggle. These breakups were still counted as errors. 

The widget recognition results are given in Table 6-8. These results show that the 
designers on average saw the right inference on 69% of the inferences SILK proposed. 
SILK was correct on 68% (98) of the 144 total inferences combined from all the par- 
ticipants. These results were brought down considerably by participant 15 who repeat- 
edly broke up widgets (29 times). A large portion of this participant's breakups were 
for moving text inside of text fields. In addition, this designer broke up many buttons 
that he wanted to be unselectable to indicate that their functionality was unimple- 
mented. This overall recognition rate is promising, but may still be too low for practi- 
cal use. The rate could be improved by having the system learn new rules for inferring 
widgets (as discussed in Section 3.7), allowing users to move components that are 
inside of widgets without breaking them up first, and using a stylus and tablet instead 
of a mouse. 

The next measurement of interest is the average number of repairs per inference 
error. A repair is an operation the designer made when attempting to correct an error. 
The data shows that the designer's made about one repair on average for each error and 
in the worse case one designer made just less than three repairs per error. This is 
encouraging, though it may indicate that many errors were repaired using just one 
operation while a few other errors generated several repair operations. In addition, we 
do not know whether the user got the desired results or just gave up. 

Widget Recognition 

participant 7 9 11       I       13      I       15 17 mean median stdev 
«widget inferences 41 17 2 14l             56 14 24 16 20 

#errors 10 1 1 5!             26 3 8 
69.4% 

4 
69.9% 

10 
16.7% recognition rate 75.6% 94.1% 50.0% 64.3%!      53.6% 78.6% 

repairs: I 
#new guesses 7 0 0 Ol             23 0 5 0 9 

«changes 0 0 0 Ol             13 0 2 0 5 
«broken 3 1 1 5              29 3 7 

1.3 
3 

1.0 
11 

0.6 repairs/error 1.0 1.0 1.0 1.0i            2.5 1.0 
«explicit inferences 11 1 0 4i             17 0 6 3 7 
«explicit successes 2 1 0 11             11 0 3 

52.0% 
1 

44.9% 
4 

38.0% explicit success rate 18.2% 100.0% 25.0%t      64.7% 

Table 6-8. Widget recognition data for design task. 
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When the designer has not gotten an inference or wishes to change an inference 
later, an explicit inferences can be made by selecting an object or group of objects and 
pressing the New Guess button. The last measurement in Table 6-8 shows that almost 
half the time the designer explicitly requested an inference, one was given. Many of 
these requests may correspond to regrouping a text field after breaking it up in order to 
move the typed text. The data on explicit inferences is not especially reliable, however, 
since two of the designers never even made one explicit inference request. 

Many of the participants were unable to get SILK to recognize widgets due to 
hard-coded size constraints in SILK's rules. The most common example of this was 
when the participants drew buttons that were wider than SILK's rules permitted. Some 
participants discovered this on their own and resized the buttons in order to force the 
correct recognition result. The sizes specified in the rules are fairly arbitrary and can 
be increased. Machine learning of widget rules would also help here (as discussed in 
Section 3.7). The participants also uncovered a few cases where new rules needed to 
be added to SILK's existing set in order to support what was drawn. For example, sub- 
ject 7 drew a scroll bar to the right (rather than the left or the bottom) of a window and 
SILK did not recognize it as a scrolling window. Again, machine learning techniques 
would allow adding these rules in a fairly automatic way. 

One user liked the "ability of SILK to understand widget types," although he and 
others were worried that "it won't understand non-standard widgets." Another designer 
did not like "fiddling with the recognizer" and "towards the end, [he] just wanted to 
grab widgets from a palette" because of continually having to "group and ungroup, 
change guesses, and so on." The misrecognition of primitives and having problems 
forcing the system to make a proper widget determination were the most common sys- 
tem errors the designers cited. It is possible that any widget recognition algorithm may 
be too error-prone and thus hurt the design process more than it helps. It is impossible 
to cite a recognition rate (other than 100%) that would say definitively whether or not 
widget recognition is worthwhile without testing such a system. My observations tell 
me that the current rate (69%) is not good enough. If widget recognition cannot be 
improved using the methods described above, a more explicit widget type or behav- 
ioral specification technique may be worth looking into (as described in Section 8.1.2). 

6.2.3.2      SILK UI Problems 

The designers ran into several different problems with SILK's user interface, most fall- 
ing into three general areas; users misunderstood the relationship between the story- 
board and the sketch, how to enter and manipulate typed text, and how to select and 
move objects. 
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Storyboarding Model 

It is apparent from the study that the relationship between the SILK storyboard and 
the SILK sketch windows was unclear to many of the designers. The sketches in these 
two windows are distinct and must be manually synchronized by the user. Several 
screens were lost when designers forgot to save them to the storyboard and then started 
a new screen in the sketch window. In addition, the undo menu item was not imple- 
mented for the storyboard window. This lack of undo in the storyboard caused sev- 
eral screens to be lost when designers deleted them by mistake. The participants also 
wanted to copy previously drawn objects out of the storyboard and drag them onto the 
current sketch. Since the screens in the storyboard are uneditable, this required copy- 
ing the current sketch to the storyboard (to save it), copying the screen with the desired 
elements to the sketch, selecting and copying the elements to the copy buffer, copying 
the saved screen back from the storyboard, and finally making the necessary changes 
using paste. 

These storyboarding problems could be solved by going to a new storyboarding 
model. In this new model a single storyboard would contain all of the designer's 
screens, without a separate sketch window. All editing would take place on the screens 
in the storyboard. These screens could be scaled up or down as needed to make editing 
easier. For example, the currently selected screen could be automatically blown up so 
that its details could more easily be created and modified. This model would no longer 
require the designer to perform complex synchronization operations, such as repeat- 
edly copying and pasting parts of screens. 

Selecting, Grouping, and Moving Objects 

Most of the other problems encountered by the designers had to do with poor user 
interface design choices made in both SILK and the underlying system SILK was built 
upon, Garnet. All of the designers had a problem selecting, grouping, and moving 
objects. The problems encountered with selection had to do with the mapping of 
mouse buttons to SILK modes. The left button is held down while sketching widgets 
and the middle button is held down while making editing gestures. The right mouse 
button is not used so as to more easily support pen-based tablets (which typically have 
only two buttons - one on the side of the pen and one on the pen tip). 

The system interprets a single click of the left or middle button on the outline of 
an object as a selection operation. The designers often had problems hitting the out- 
line. In the case of the middle button, this causes nothing undesirable, but in the case 
of the left button this may create a tiny object (possibly a single pixel). In addition, the 
designers often used the left button when purposely clicking away from an object in 
order to turn the selection off. Again, a spurious object was created. In both cases the 
designer was forced to delete this spurious object. Many of the unrecognized primi- 
tives were a result of these selection errors. 



104 CHAPTER 6. EVALUATION 

Given the design choice of using two buttons, this confusion is hard to eliminate. 
The alternative would have been to use a single button. Overloading a single button 
could be achieved by one of three options: (1) use one gesture recognizer for both edit- 
ing gestures and primitive components, (2) use a time-out mechanism to decide 
whether the user is performing an editing operation or simply sketching, or (3) add a 
new mode that switches the pen between editing and sketching operations. The first 
option would reduce the editing and primitive gesture recognition rates. The second 
option may appear unpredictable to the user and thus generate more errors than the 
current interface. The third option would probably be both confusing and time con- 
suming. 

Another problem was with grouping. The designers often created a large number 
of small objects in their designs. When they wished to reuse or move these objects they 
had to be selected one at a time, as SILK does not support dragging out a rubber band 
box to select them. Although a grouping gesture (encircling the objects) is supported, 
this irregular gesture is often poorly recognized by Rubine 's algorithm. This problem 
may be solved by writing a special recognizer for this gesture. 

By far the most common editing problem occurred when designers tried to move 
objects. Most programs allow dragging an object by mousing down anywhere on the 
object and moving the mouse. Garnet, as described in Section 1.4.1.3, instead supplies 
white move handles (similar to the standard black grow handles) that appear on the 
object when it is selected (see Figure 1-10 on page 13). The user is forced to move the 
object by dragging on these handles with the left or middle mouse button. The design- 
ers regularly forgot this or missed the handles. Again, this led to lots of unrecognized 
editing gestures when the middle button was used and lots of spurious single-pixel 
objects when the left button was used. Participant 11 repeated this error dozens of 
times throughout the tutorial and design task. 

Creating and Editing Typed Text 

Another problem the participants commonly experienced was with creating and 
manipulating typed text. Creating new typed text, replacing squiggly text, or editing 
existing text are all accomplished by making a caret gesture at the text location (see 
Figure 6-8). Unfortunately, the current implementation requires that the peak of the 
caret gesture intersects with the bounding box of text to be edited or else a new text 
object is created. At least three of the participants were unaware of this and repeatedly 

Figure 6-8. Caret gesture for creating and editing typed text. 
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had problems getting the peak to intersect, thus creating a new text object where none 
was wanted. This can be solved by having the caret gesture edit any text that the ges- 
ture intersects with, not just the peak. 

In addition, the participants struggled with the size of the text. Besides only 
offering one font size, the usability test used larger than normal fonts in order to make 
the resulting video more useful. Because of this, the participants often had problems 
reproducing the screens in the tutorial (which used a smaller font) without having text 
overflow the edges of their widgets. One participant (13) avoided this problem by 
using the tutorial as only a guide and chose her own layout and text strings. Supporting 
multi-line text labels, multiple font sizes, and scalable text would alleviate some of 
these problems. 

The final problem with typed text had to do with alignment. The previous obser- 
vation about a lack of alignment activity was most commonly violated when the 
designer was converting squiggly text to typed text. For example, replacing squiggly 
text in text fields or buttons often led to the repositioning of the text object since its 
size changed after the text replacement. Almost all of the participants ungrouped text 
fields and buttons to reposition the labels. This indicates that it should be easier to 
reposition objects contained inside of another object without having to use ungroup 
and that SILK should automatically keep typed text to the left of the text field box, as 
illustrated in Figure 6-9. Automatic alignment would have to use heuristics, as the 
desired alignment often depends on the widget type (e.g., right-aligned text for text 
fields, left-aligned text for radio buttons, and centered text for buttons). 

. I     To I I To    1 I 

(a) (b) (c) 

Figure 6-9. Replacing the squiggly text in (a) currently results in something like (b). A proposed 
change would keep the inserted text right aligned with the text field box as in (c). 

Most of the problems discussed here can be solved by offering better feedback to 
the user, using machine learning techniques to improve the recognition of editing ges- 
tures and widgets, and making some basic changes in SILK's user interface. 

6.2.3.3      Learning and Agility 

The participants worked through the entire SILK tutorial in 54 minutes on average. 
This, coupled with the fact that five of the six designers were able to use the major fea- 
tures of SILK taught to them during the tutorial (the recognized widgets, editing com- 
mands and gestures, specifying behavior in the storyboard, and testing the design in 
Run mode), indicates electronic sketching and storyboarding do not take much effort 
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to learn. One designer noted that the "tools are few and simple - it's easy to remember 
all possible combinations of things." Addressing the recognition and user interface 
problems discussed above may make the system even easier to learn. 

In addition, improving the agility of the system may also improve its effective- 
ness. Several of the designers noted the difficulty of sketching with a mouse and com- 
mented that a pen and tablet would work better. SILK was designed to be used with a 
display tablet , but I was unable to obtain one. In addition, SILK really slowed down 
as the participants got near the end of the task. This was due to two reasons: as the 
design sizes grew, file saves took a long time and there is a memory leak in the Lisp 
environment the experiment used which led to frequent garbage collections near the 
end of the task. The designers commented on both of these problems, reaffirming the 
importance of fast tools for the early design phase. 

The participants showed that SILK, with its current performance, will not 
replace paper entirely in the early stages of user interface design. Participant 11, who 
had the most problems, spent the first 13 minutes of the task designing on paper. This 
was mainly due to the problems she experienced using SILK during the tutorial. Par- 
ticipant 9 said she was "fighting the urge to go to my piece of paper" - she did so 
momentarily later in the experiment when waiting for a long system save. Still, partic- 
ipant 13 stated during the engineering discussion that SILK was "like pencil and 
paper" and a "good quick sketching tool to get ideas down." 

6.2.4       Summary of Results 

In summary, the usability evaluation showed that SILK achieved two major goals: 
designers are effective at using SILK for creating early user interfaces designs and 
then communicating those ideas to other members of a design team. The designers 
achieved these results by using SILK to quickly focus on the important design details, 
edit the design, add interactivity to the design and test it, and finally demonstrate the 
design to an engineer and modify it as needed. 

6.3      Engineering Changes 

As SILK is an experimental system, many bugs were found during the pilot and the 
actual tests described in this chapter. This section discusses how decisions were made 
on what bugs to fix, describes the type of bugs that were fixed, and gives an idea of 
what known bugs remain. 

8. I use the term display tablet for a unified stylus, tablet, and LCD display. 
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6.3.1 Bug Fix Policy 

My policy was to first fix any bugs found during the pilot that would not allow a partic- 
ipant to complete the tutorial task. Then, any other bugs that had either an easy fix or 
no obvious work-around were tackled. Finally, during the SILK usability test, the pol- 
icy was to only fix bugs that could keep participants from performing operations 
required to complete the tutorial. Bugs that crashed the system were of the highest pri- 
ority. There was one exception to this policy, which will be described below. 

6.3.2 Bugs Fixed 

There were at least 32 bug fixes made as a result of the SILK usability test. Most of 
these fixes were made during the pilot. The majority of the bug fixes made before the 
actual experiment had to do with fixing selections, printing, and getting editing opera- 
tions (e.g., cut, copy, paste, and clear) to work properly on storyboard screens. 

Only five non-cosmetic fixes were made after the actual experiment started. Four 
of the bugs had to do with storyboard transition arrows. The first two bug fixes were 
made after the first participant's (7) session. This participant was unable to delete sto- 
ryboard arrows (a side effect of an earlier bug fix). This was corrected before the next 
participant was run. The second bug fix corrected a problem in detecting the object a 
storyboard arrow was drawn from. A similar problem was found after the second par- 
ticipant's (9) session. SILK was choosing the wrong object when arrows were drawn 
from text fields. The participant worked around this by drawing a small object next to 
the text field and drawing arrows from the new object instead. This bug was fixed after 
participant 9's session. The final bug caused SILK to crash in rare situations when 
deleting arrows. This bug was fixed just before the last participant's (17) session. 

There was one bug fix that violated the bug fix policy stated above. Two of the 
first three designers tried to draw buttons that used circles (rather than rectangles) as 
the container. The non-recognition of these buttons caused considerable confusion, so 
a new rule was quickly added after the third participant's (11) session and this problem 
went away. At the same time, the rule was modified to allow wider buttons, as the par- 
ticipants had also run into this problem. These fixes may have improved the widget 
recognition statistics for the last three participants, but if so it would only be a small 
improvement since the first three users all learned of the original limitation and a 
work-around during the tutorial. 

6.3.3 Bugs Remaining 

As might be expected, there are many known bugs remaining in the system. These 
bugs are distributed over a range of system functionality. The bugs include the follow- 
ing: corruption in file saves, error dialogs over the wrong windows, cut/paste on story- 
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board arrows crashes the system, and clicks on objects in Run mode are not detected 
properly in a few rare cases. Given enough time, all of these bugs are fixable and the 
corrections should be made before the system is released. 

6.4      Discussion 

The usability test results, numerical and descriptive, suggest three important conclu- 
sions: electronic storyboarding is a major win for the early stages of design, electronic 
sketching is fairly easy to learn, and several engineering and tutorial changes would 
make SILK much more usable. 

The value of storyboarding was brought to light mainly in the descriptive results. 
The designers repeatedly mentioned storyboarding as the feature they really liked and 
found useful. In addition, the observations taken during the engineering discussion 
showed that storyboarding, through both the interactivity and design overview it pro- 
vides, helped designers to effectively convey their design ideas to engineers. Engineers 
and designers were able to discuss changes and make these changes while the engineer 
was present. 

The designers found that storyboarding was fast and easy to learn. The fact that 
several of the designers found that SILK was similar to pencil and paper made the tool 
itself fairly easy to learn. Most of the designers were effective after a simple demon- 
stration and a tutorial that took under an hour to complete. This was despite many bugs 
and user interface problems with SILK itself. 

Many of the problems the participants encountered with recognition errors can 
be improved by offering better recognition feedback, using machine learning to 
improve the default rules and recognizers, and improving the tutorial. The tutorial 
needs to stress the importance of correcting inferences, rather than redrawing primitive 
components, so that the recognizer will learn the user's style of sketching. 

The main goal of this evaluation was to see whether designers could effectively 
use SILK to design user interfaces. The usability test showed that this goal was met - 
five of the six participating designers were effective using SILK. In addition, the 
designers on average produced two different designs in about one and a half hours. 
After the designs were finished, the designers were able to use SILK to demonstrate 
the designs, have a productive discussion about the design with an engineer, and make 
real-time changes to the designs. Finally, the designers uncovered several problems 
with the current SILK user interface and recognition algorithms. Fortunately, most of 
these problems have solutions. 



CHAPTER 7 
Related Work 

Sketching on paper has always been used to explore early design ideas. Yet only 
recently have the advantages of paper-based sketching over rigid electronic tools for 
conceptual design been more formally explained. My application of sketching to the 
electronic domain tries to take advantage of these results. 

Similarly, though electronic design tools have been available for a number of 
years, only recently have they become a standard day-to-day tool for designers work- 
ing on the later stages of a design idea. This may have to do with the fact that many of 
the early tools were research prototypes and that current commercial tools are often 
targeted at producing either prototypes or finished interfaces, but do not offer support 
for both tasks. 

This chapter first looks at the previous work examining sketching in the design 
process. It then looks at the important electronic tools that have been produced: includ- 
ing prototyping tools, user interface builders, and other electronic sketching tools. 
Finally, it reviews the work on informal and pen-based user interfaces, recognition 
technologies, techniques to specify behavior, and the inference of graphical con- 
straints. 

7.1      Sketching on Paper 
The work on paper-based sketching can be broken up into two main areas: the advan- 
tages gained by sketching in terms of how others evaluate a given design and the 
advantages gained in terms of improved design on the part of the designer. 

109 
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7.1.1 Sketching Improves Design Evaluations 

Wong's work on scanning in hand-drawn interfaces was the major impetus for my 
work in this area [Wong 1992]. This research, done within Apple's Advanced Technol- 
ogy Group, was an outgrowth of Wong's frustration with her colleagues mistaking 
early prototypes for more finished designs. This resulted in early design reviews that 
focussed on alignment, colors, and fonts rather than on the overall structure of the 
interaction. In order to allow her colleagues to focus on the important parts of the 
interface, Wong sketched her interfaces on paper, scanned them in, and then added 
behaviors to the sketchy interfaces by using Director [Macromedia 1994]. Since the 
interfaces looked rough, her colleagues no longer mistook them for finished designs. 

Wong had to go through the tedious process of scanning-in sketches. SILK 
allows designers to create both the look and behavior of these interfaces directly with 
the computer. In addition, adding the behavior in Director was difficult since it often 
required writing code in Director's programming language, Lingo. SILK allows 
designers, who generally do not know how to program, to demonstrate behaviors more 
directly by simply drawing arrows between screens in the storyboard. 

Another interesting observation about design evaluation comes from architec- 
tural design. Strothotte reports that architects often sketch over printouts produced by 
CAD tools before showing works in progress to clients [Strothotte 1994]. The reason- 
ing is that clients who are shown precise drawings feel that the work is nearly finished 
and that they have little say in how it might be changed at that stage. In fact, this group 
has produced a system that can render precise architectural drawings in a sketchy look. 
More recently, they have done a survey of architects and have found that architects 
prefer sketches for a first draft, since they arouse interest in their designs and promote 
more discussion of a given design [Schumann 1996]. This work lends further evidence 
to the assertion that a different level of feedback is obtained from a sketchy drawing. 

7.1.2 Sketching Encourages More Design Ideas 

In addition to the observations about the positive effect sketches induce on design eval- 
uations, others have found that sketches allow the designer to focus on the proper 
design issues. Goel's cognitive science thesis [Goel 1995] examined how sketching 
differed from structured drawing in order to argue that current versions of the compu- 
tational theory of mind [Fodor 1975] fail to address sketching. Goel observed design- 
ers who were asked to solve design problems by either sketching on paper or using a 
computer-based drawing program. 

Goel breaks design up into four distinct phases: problem structuring, preliminary 
design, refinement, and detailing. He characterizes preliminary design "as a process of 
creative, ill-structured problem solving, in which generating and exploring alternatives 
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is facilitated through a coarseness of detail, a low commitment to ideas, and a large 
number of lateral transformations." These transformations are facilitated by the ambi- 
guity of sketches. Goel claims that a "notational symbol system, such as drafting, 
which differs from sketching in being nondense and unambiguous, will hamper lateral 
transformations." 

Thus the ambiguity of marks in an early design is important, "because one does 
not want to crystallize ideas too early and freeze design development." Goel observed 
that in freehand sketching, when a new idea was generated, a number of variations 
were quick to follow. In contrast to this, with a drawing program (in this case, 
MacDraw) most subsequent effort after the initial generation was devoted to detailing 
and refining the same idea. 

These results are very similar to earlier work done by researchers studying 
graphic design students. Black's user study found that "the finished appearance of 
screen-produced drafts shifts [a designer's] attention from fundamental structural 
issues" and caused designers to push computer-based designs further and explore 
fewer alternatives than they would using paper-based designs [Black 1990]. 

7.2      User Interface Software Tools 

There have been many user interface software tools produced by both the research 
community and commercial concerns. This section reviews the earliest work and gives 
an overview of some more recent tools. A more complete overview of user interface 
software tools can be found in [Myers 1995]. The types of tools discussed have been 
further divided into prototyping tools and user interface builders. Unlike user interface 
prototyping tools, interface builders are generally used for producing the final applica- 
tion. Prototyping tools allow designers to quickly illustrate examples of what the 
screens in a program will look like. 

7.2.1       User Interface Prototyping Tools 

A survey of designers (see Chapter 2) showed that designers use prototyping tools 
more often than user interface builders. The main reason for this is that current proto- 
typing tools are aimed at an earlier stage of design than interface builders. In addition, 
prototyping tools allow some end-user scripting, while not requiring programming in a 
complex environment that includes compiling, linking, etc. 

Trillium [Henderson Jr 1986] was one of the early research prototyping tools. 
This Xerox PARC-produced tool was used for designing the physical user interfaces 
for machines (such as Xerox copiers and printers). Trillium structured the interface as 
a collection of frames (equivalent to screens in SILK). The system permitted the simu- 
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lation of the prototype hardware user interface using a run-time interpreter rather than 
requiring compiling and linking to an application program. Trillium allowed some 
end-user extension of the look of objects, but most new objects or behavioral changes 
required programming. The major weakness of Trillium is that it offered little support 
for frame to frame transitions, since this was unnecessary for hardware user interface 
panels. 

Dan Bricklin's Demo [Lifeboat 1995] was one of the first commercially success- 
ful prototyping tools. It allowed designers to mock-up the ASCII menu structure and 
text input/output screens of MS-DOS programs. This simple tool allowed the design 
team to prototype a user interface before the actual application code had been com- 
pleted. 

Prototyping tools are now commonly used by interface designers. Of the design- 
ers I surveyed (see Appendix Section A.2), 48% used HyperCard, 45% used Director, 
and 29% used Visual Basic. These were the three most popular user interface prototyp- 
ing tools used by these designers (at the end of 1994). Though useful in the prototyp- 
ing stages, all three tools come up short when used either in the early design stages or 
for producing production-quality interfaces. 

Apple's HyperCard [Apple 1993] was one of the first popular UI prototyping 
tools for graphical applications. HyperCard's "programming" metaphor is based on 
changing "cards" upon button presses. HyperCard shares many of the drawbacks of 
traditional user interface builders: it requires designers to specify more design detail 
than is desired, and often it must be extended with an event-based programming lan- 
guage (HyperTalk) when the card metaphor is not powerful enough. In addition, 
HyperCard cannot be used for most commercial-quality applications due to its poor 
performance and lack of ability to pass off the design to another tool, which usually 
forces the development team to reimplement the user interface with a different tool. 
HyperCard's in-place card transitions were a major influence on SILK's storyboarding 
transition scheme. Unlike HyperCard, however, SILK's event transitions are visible, 
and several can be viewed at once. Thus, SILK storyboards may be easier to under- 
stand and edit. 

Director [Macromedia 1994] was designed primarily as a media integration tool. 
Its strength is the ability to combine video, animation, audio, pictures, and text. This 
ability, along with its powerful scripting language, Lingo, has made it the choice of 
multimedia designers. These strengths, however, lead to weaknesses when used as a 
general interface design tool. It is very hard to master the many intricate effects that 
Director allows. In addition, it lacks support for creating standard user interface wid- 
gets (e.g., scroll bars, menus, and buttons) and specifying their behavior in a straight- 
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forward manner. Finally, Lingo, a full-powered programming language, is 
inappropriate for non-programmers. 

Design tools such as Director and HyperCard allow the sequencing of screens, 
and although they use direct-manipulation methods to specify these sequences, these 
methods lack the fluidity of paper-based storyboarding. For anything but the most sim- 
ple sequences, these tools require the use of scripting languages. 

This is also the major drawback to using Visual Basic [Microsoft 1993], which is 
becoming increasingly popular for interface prototyping due to its complete widget set 
and third-party support. There are literally hundreds of third-party VBXs available for 
Visual Basic that add on new features, such as database engines, new widgets, and 
spreadsheets. Visual Basic includes a standard drag-and-drop user interface builder, 
yet it is considered a prototyping tool since the language it is based upon, Basic, is not 
usually considered a production language, nor does it require the tedious compile/link/ 
test cycle of a hard to learn language such as C or C++ (the typical languages sup- 
ported by user interface builders). 

7.2.2      User Interface Builders 

Unlike prototyping tools, user interface builders create the actual code for the applica- 
tion user interface. They generally allow the designer to select widgets, such as dialog 
boxes, menus, and windows from a predefined palette, and place them on the screen 
with a mouse. They also allow the designer to set properties of the widgets, such as 
size, position, color, and textual labels. Since user interface builders are used for pro- 
ducing a finished application, these systems may generate code that is compiled and 
linked with the rest of the application or they may generate some type of internal rep- 
resentation that a User Interface Management System's (UIMS) run-time system can 
use to implement the UI when the target application is executed. 

MENULAY [Buxton 1983] was one of the first interactive UI builders and was 
part of an early UIMS. It was used for laying out networks of menus that could be 
structured in a hierarchic manner. It allowed the designer to assign function names to 
be called on menu selections and to set object properties, such as position, color, and 
size. The system produced a table that was converted to linkable C code via the 
MAKEMENU system. MENULAY was quite limited in that it was only for laying out 
textual or graphical objects that, when selected, would cause a new menu to appear. 

Cardelli's Dialog Editor [Cardelli 1987; Cardelli 1988] was another of the early 
user interface builders. It allowed the creation of graphical UIs that feature many of the 
common widgets in use today (such as scroll bars, pulldown menus, text fields, but- 
tons, etc.). In addition, it supported the graphical specification of stretching parameters 
for the widgets, thus allowing the user to specify how the objects should change when 
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the windows containing them were resized. The system produced code that was then 
attached to Modula2+ event code. 

The NeXT Interface Builder [NeXT 1991] was the first major commercial UI 
builder. It allowed the standard layout of UI objects, but also supported connecting 
actions to these objects by graphically "wiring" objects together. This style of visual 
programming permitted much more of the UI to be specified in the UI builder, but it 
still required programming (in Objective C or C++) to finish the interface. A NeXT 
financed study claimed that applications using the NeXT environment (including the 
Interface Builder) required 83% fewer lines of code and took one-half the time of 
applications written with less advanced tools [Hamilton 1992]. Other popular Unix- 
based interface builders include UIM/X by Visual Edge Software Ltd. [Software 1990] 
and Devguide from Sun Microsystems [Sun 1991]. 

There are now dozens of user interface builders for Microsoft Windows. One of 
the more interesting tools is Borland's Delphi [Borland 1996]. Delphi includes an 
interface builder, programming language (based on Object Pascal), and debugger in a 
nice interactive development environment that includes fast incremental linking. 

There are several problems with the interface builders discussed in this section. 
These tools are inappropriate for designers, since most designers do not know how to 
program and the tools take too much time to learn and use in the early stages of user 
interface design. Another major problem with interface builders is that they offer little 
support for the "insides" of an application, that is, the graphics area in a drawing pro- 
gram, CAD tool, or other style of visual editor. With SILK or one of the prototyping 
tools described above, the designer can at least attempt to give a flavor of how these 
graphics areas will look and work. 

7.3      Informal Interfaces 
Several researchers have recognized the benefits sketches provide (as discussed in Sec- 
tion 7.1) in terms of communicating a level of informality or indicating the draft qual- 
ity of a design. What distinguishes the work described in this section is a reliance on 
standard mouse-based direct manipulation techniques for input, while using fancy ren- 
dering schemes to make the output appear to be "sketchy". 

As mentioned previously, researchers have produced a non-photorealistic Ten- 
derer [Strothotte 1994] for an architectural CAD system. This system uses cubic 
curves to represent lines; the control points of the curves are modified to make the 
lines appear hand drawn. The editor allows setting parameters that affect line quality 
on an object or group of objects. This allows the architect to focus the attention of a 



7.3. INFORMAL INTERFA CES 115 

viewer and elicit feedback on a portion of the design that is under consideration. One 
drawback to such a system is that the design is still created using a precise representa- 
tion, leading the designer to potentially focus on unimportant details. A similar system 
is now a commercial product for PCs running Windows. Squiggle [Insight 1995] trans- 
forms CAD files, in the standard HPGL plotter format, to sketchy drawings. 

The EtchaPad system [Meyer 1996] is a drawing program based on PadDraw, the 
drawing program supplied with Pad++ [Bederson 1994]. EtchaPad allows an end-user 
to draw a small number of recognized widgets that can then perform PadDraw func- 
tions that are normally accessed through menus. For example, the user can create a 
new button that saves a file when the button is pressed. Other interesting widgets 
include property widgets that allow the user to test and set values of object properties 
in a very direct way and tool widgets that allow graphical operations, such as aligning 
objects. The key idea is that these user interfaces are very light weight - a user might 
create them during a work session and then throw them away when done. The system 
uses Perlin's noise function [Perlin 1985] to give the drawings an informal look. The 
amount of noise can be varied in order to change the level of informality. Unlike in 
SILK, the widget recognition in EtchaPad is quite simple since there is a very limited 
set of widgets, they are composed of unambiguous shapes, and widgets must have a 
special diagonal "tick" line drawn in their upper left corner. 

J-Sketch [Rieman 1996] is a novel attempt to make the appearance of mouse- 
based electronic sketches resemble that of paper-based sketches, without sacrificing 
the speed advantage often enjoyed by paper for rough sketches. Like the architectural 
CAD system mentioned above, it uses cubic curves (specifically, Bezier curves) to 
draw multiple overlapping smooth lines when the user draws a single line. An experi- 
ment showed that users could produce rough sketches faster with J-Sketch than with 
computer-based drawing applications and at about the same speed as with pencil and 
paper. This same type of algorithm could be added to a system like SILK to make the 
sketches look more like paper-based sketches. 

In addition to the work of those exploring human-computer interaction issues, 
after 30 years of pursuing the goal of photorealistic rendering there is a growing inter- 
est in non-photorealistic rendering among computer graphics researchers. For exam- 
ple, non-photorealistic rendering is one of the key features of the SKETCH system 
described in Section 7.5. Researchers at the University of Washington have experi- 
mented with several systems for rendering [Winkenbach 1994] and interactively creat- 
ing [Salisbury 1994] drawings that look like "pen-and-ink illustrations". 
Commercially, Fractal Design has produced a set of tools that are popular among 
graphic artists because these tool produce effects that previously could only be made 
using physical media. Painter [Design 1996] is a 2-D naturalistic painting system and 
Sketcher [Design 1993] is a sketching tool that can also transform photos to a more 
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handmade look. Both tools use randomness to emulate real-world media such as char- 
coal, ink, oil paint, and pencil. Finally, Lansdown and Schofield give a review of the 
non-photorealistic rendering techniques used in computer graphics [Lansdown 1995]. 

7.4      Pen-based User Interfaces 
The major problem with the systems discussed in Section 7.3 is that they ignore the 
advantages that pen-based input affords. Specifically, pen-based user interfaces offer a 
form of interaction that can be even more direct than the pulldown-menu oriented 
interaction traditionally provided with graphical user interfaces. These traditional 
interfaces require the user to first select an object with the mouse, then move the 
mouse to a pulldown menu or palette, and finally select an operation to perform on the 
selected object. Pen-based user interfaces can easily take advantage of gestures (see 
Section 7.6.4) to perform the selection and command with one stroke of the pen. In 
addition, pen-based user interfaces naturally support informal sketches, while also per- 
mitting more formal documents. 

Sutherland's Sketchpad [Sutherland 1963] was the first system to explore pen- 
based user interfaces (see Section 7.5 for a description of Sketchpad). This ground- 
breaking effort was followed by pen-based application research at the Rand Corpora- 
tion [Davis 1964]. Most of the Rand work was focused on handwriting and shape rec- 
ognition. 

In the mid-80s MCC's Interactive Worksurface Project developed a sketch-based 
interactive tablet intended for experimenting with pen-based user interfaces [Martin 
1990]. The system used an AI blackboard system to support recognition of different 
types of data by several different recognition engines. The system supported handwrit- 
ten numbers, letters, shapes, editing marks, and math symbols. The recognition 
engines used neural networks, which unfortunately require large sets of training sam- 
ples. This technique seemed inappropriate for SILK since designers seem to draw UI 
components with their own look - SILK supports learning how an individual draws the 
basic shapes that compose widgets. 

IBM had a similar research project that focussed on using gestural interfaces to 
support pen-based editing and markup of documents [Wolf 1989]. These user inter- 
faces were termed "paper-like" to distinguish them from notepad computers that relied 
on keyboard and mouse interaction. The paper-like applications were run on display 
tablets^ that were attached to workstations running a modified version of the X-Win- 
dow system [Rhyne 1991]. The research included work on producing recognizers for 

1. I use the term display tablet for a unified stylus, tablet, and LCD display. 
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run-on (i.e., overlapping) handprinted characters [Fujisaki 1990] and a dialog inter- 
preter [Rhyne 1987], which defined the language of symbols that could be combined 
and the associated actions to be taken upon recognition. Some of the sample applica- 
tions they explored included a cooperative meeting application with a shared elec- 
tronic whiteboard, gestural spreadsheet editing, data-base inquiry, a sketching 
program, a musical score editor, and a two-dimensional mathematical expression for- 
matter. A user study of editing tasks using the Lotus 1-2-3 spreadsheet application 
found that users completed the tasks in about 70% of the time required by keyboard 
users. In addition, the subjects preferred the gestural tablet interface since the opera- 
tions could be carried out quickly and the gestural commands were easier to remember 
[Wolf 1988]. The sketching application differs distinctly from SILK in that the IBM 
editor regularized the form of objects (i.e., "cleaned" them up), although it also 
allowed freehand sketching, but without gestural editing. 

The NPL electronic paper project [Brocklehurst 1991] was a British effort that 
was very similar to the concurrent work at IBM. This display tablet-based system 
offered a familiar model, i.e., paper and pencil, in an attempt to ease the learning of the 
system. The work focussed on the recognition of gestures and handwritten cursive text. 
The system used the standard proof readers' symbols as editing gestures. The cursive 
text recognition was based on learning from the samples of 250 individuals combined 
with learning the standard styles taught to school children. The sample applications 
they built included a text editor (for previously typed or recognized text), a script edi- 
tor for manipulating handwritten text prior to the deferred recognition, a table con- 
struction tool, a graph/chart production tool, and a diagram editor. These tools differ 
from the philosophy of SILK in that they try to clean up and recognize sketches (for 
the tables, graphs, charts, and diagrams) after they are drawn. 

The research work in pen-based interfaces was followed by attempts to make 
pen-based computing a successful commercial venture. Go Corp. introduced a pen- 
based operating system, PenPoint [Carr 1991; GO 1992], in the early 90's. The goal 
was to become the standard operating systems vendor for pen-based tablet computers. 
In addition to its focus on pen-based input, PenPoint was a fully functional object-ori- 
ented operating system that supported application embedding, preemptive multi-task- 
ing, and other attractive features. The only major commercial product that used 
PenPoint was the Personal Communicator from EO. 

The two main selling points for the EO machines had to do with mobility and the 
social rules of meetings. First, a pen-based computer could be useful to the large num- 
ber of mobile professionals (salespeople, medical personal, etc.) who were not using 
computers in their daily work because of the difficulty of using keyboards while stand- 
ing up. Second, typing on a laptop computer is socially unacceptable in most meeting 
situations, whereas writing on a pad is not as intrusive. EO was eventually bought by 



118 CHAPTER 7. RELATED WORK 

AT&T and after disappointing sales the product was discontinued. Momenta Corp. 
was another early pen-based computer start-up that failed in the pen-computing arena. 
It appears that the EO and Momenta machines were not successful because they were 
too expensive, too slow, and in the case of EO did not run user's existing software. 

Microsoft tried to attack that last problem with Windows for Pen Computing, a 
modification of its standard Windows operating system that offered pen support and 
allowed pen-based computers to run standard Windows applications. Manufacturers 
built dedicated pen-based machines or pen/keyboard hybrids, such as Compaq's popu- 
lar Concerto, to take advantage of this OS. While not a runaway success, Microsoft's 
product seems to be the safest choice for software developers and the customers pur- 
chasing the hardware. Microsoft's support for pens changed with the release of Win- 
dows 95. Now instead of integrating the pen support into the OS, Microsoft licenses 
the pen services component to OEM tablet manufacturers, who can then create the 
drivers to allow their hardware to work properly with Windows 95 applications. 

Apple's Newton personal digital assistant (PDA) has certainly been the most suc- 
cessful pen-based user interface in terms of units sold, although the first major version 
faced a considerable amount of criticism and derision [Burgess 1993; Fehr-Snyder 
1995] in the months after it was released (even in a popular comic strip). The main 
problem was that the handwriting recognizer, although one of the best available at the 
time, was not accurate enough. Unfortunately, both Apple's marketing and the early 
overviews emphasized the ability of the device to recognize the user's handwriting - as 
if handwriting recognition was considered the most important feature of this small 
device. This is in contrast to the approach of GO, who emphasized the importance of 
using a small set of gestures for editing and only using handwriting recognition in 
fields that could be constrained by a data type (which would improve the recognition 
accuracy). Since that time, Apple has released a major update of the Newton OS that 
includes a much better handwriting recognizer. The reviews have been positive [Lu 
1996; Seiter 1996], but it is unclear how much damage Apple did to the entire pen- 
based market with their early Newton blunders. 

Concurrent with the commercialization of pen-computing, researchers have con- 
tinued to work on pen-based user interfaces. There has been several years of research 
exploring interfaces for the LiveBoard [Elrod 1992], which is a whiteboard-sized, pen- 
based, interactive display designed for use in conference rooms and classrooms. This 
device is the one commercial outgrowth of Xerox PARC's work in ubiquitious com- 
puting [Weiser 1993], which envisioned a future of inexpensive pad-based computers, 
whiteboard-sized pen-based tablets, and numerous small devices the size of post-it 
notes all connected together via wired and wireless networks. 
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Tivoli [Pedersen 1993], which is supplied with the LiveBoard, is a stroke-based 
meeting support tool that allows participants to make meeting notes, diagrams, or dis- 
play prepared presentations in front of a group. The tool uses a combination of static 
interface widgets and gestures for editing the meeting notes. Tivoli supports remote 
collaboration (shared drawing), multiple pages, imported images, and printing. Later 
additions to Tivoli allow users to add structure to unstructured notes when needed, so 
that structure does not get in the way of normal usage [Moran 1995]. The system tem- 
porarily perceives the "implicit structures" in the sketch (as suggested by the Per- 
Sketch system described in Section 7.6.5), such as lists, text, tables, and outlines. 
Operations can then be carried out according to the expected behavior of the current 
implicit structure, such as moving items around in an outline. 

7.5      Sketching Tools 
There has been a recent spurt of work on electronic sketching, some of it inspired by 
early reports of SILK [Landay 1995a; Landay 1995b; Landay 1996a; Landay 1996b]. 
Like many areas in user interfaces and computer graphics, this area of research can 
trace its roots back to Sutherland's original Sketchpad [Sutherland 1963]. Sutherland 
used a light-pen to draw structured diagrams on one of the first graphics displays. Like 
Sketchpad, many of the systems described below try to make sketching on the com- 
puter easier and more powerful than paper in terms of editing. By adding interactive 
behaviors, SILK takes this further and tries to embody Sutherland's comment made 
over 30 years ago, "It is only worthwhile to make drawings on the computer if you get 
something more out of the drawing than just a drawing" [Sutherland 1963, p. 17]. 

The Electronic Cocktail Napkin [Gross 1994; Gross 1996] allows architects to 
sketch their designs on an electronic pad similar to the one used with SILK. Like 
SILK, this gesture-based tool attempts to recognize the common graphic elements in 
the application domain — architectural drawings. SILK differs in that it allows the 
specification and testing of the behavior of the design, whereas the architectural draw- 
ing is fairly static. The Electronic Cocktail Napkin also supports sketch-based queries 
that are used to search for similar architectural designs either from a library or from 
the past work of the designer. 

Kramer's sketching system [Kramer 1994] is similar to SILK in its goal of sup- 
porting a very fluid free-form design environment. This conceptual design system is 
based on structuring a sketch as a set of translucent, non-rectangular patches. SILK 
concentrates on user interfaces and allows the sketches to behave, whereas Kramer's 
system allows attaching many different "dynamic interpretations" to patches, but sup- 
ports only a limited set of actual interpreters. There have been proposals [Kolli 1993] 
for building dedicated hardware sketch pads for industrial designers who desire a tool 
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for conceptual design with the fluidity achieved in Kramer's system but without the 
structure imposed by a system like SILK. 

Pugh's work using interactive sketch interpretation for designing solid three- 
dimensional objects [Pugh 1993] is relevant in that this system, called Viking, also 
tries to bring the advantages of paper-based sketching to a computer-based tool. The 
system used a constraint based approach to generate 3-D geometry from 2-D sketches. 
Pugh's work differs in that it is for designing solid models and his sketches are really 
precise line-drawings of the objects rather than the rough paper-like sketches sup- 
ported by SILK and the systems described above. 

The SKETCH system [Zeleznik 1996] from the Brown University Graphics 
Group is, like Viking, designed for building three-dimensional scenes using a two- 
dimensional interface. Unlike Pugh, the developers of SKETCH used an "approach 
that is very similar to Landay and Myers' use of sketching" in SILK. That is, the end- 
user sketches rough 2-D gestures that the system tries to group together in order to 
infer 3-D objects. Since SKETCH is intended for early conceptual design of 3-D mod- 
els, the tool renders the objects in a non-photorealistic style. SKETCH also uses ges- 
tures for editing the scenes and supports simple constraints for object manipulation. 
SKETCH differs from SILK in that the gestures used to create objects correspond to 
partial drawings of important visual features - generally edges - of the intended 3-D 
primitive, whereas in the easier 2-D domain SILK can use gestures that are quite simi- 
lar to the intended object. Other than simple graphical constraints, SKETCH does not 
address any issues of interactivity in the design. 

7.6      Recognition Technologies 

SILK's gesture recognition and widget inference algorithms are related to many differ- 
ent recognition technologies. My work was not intended to expand on these technolo- 
gies, but it is important to get an overview of the area to understand how SILK might 
change with a different recognition system. In this section I give an overview of the 
recognition process and then give a summary of the important systems that recognize 
handwriting, sketches, gestures, shapes, and visual languages. 

7.6.1      General Recognition Issues 

Recognition-based user interfaces translate input in a form similar to that used for 
human-human communication (e.g., speech, handwriting, drawings, and gestures) to a 
format that is machine readable (e.g., ASCII text, point vectors, or commands). The 
major problem with this style of input is that it is inherently ambiguous. Many of the 
design issues deal with resolving this ambiguity and/or informing the user of it and 
allowing the user to correct it. 
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Recognition proceeds in two phases: the recognition system is first trained to 
associate input data with symbols and then, during actual use, uses the learned associ- 
ations to translate a given input to symbols. The training and recognition phases often 
use knowledge that is statistical, linguistic, or deductive in nature to produce the asso- 
ciations. The symbols resulting from recognition may or may not be correct. Recogni- 
tion errors fall into three categories: a failure to produce a result, an incorrect result in 
terms of the symbols produced, or an improper grouping of input data. Since errors are 
bound to occur, it is important to consider the accuracy requirements of the task (see a 
discussion for handwriting recognition at the end of Section 7.6.2). 

A complete treatment of the issues involved in designing recognition-based user 
interfaces is found in [Rhyne 1993]. In the following sections we concentrate on rec- 
ognition-based user interfaces for stylus input and/or sketches/diagrams. 

7.6.2       Handwriting Recognition 

Handwriting recognition has been an area of computer science research since Dimond 
described his "stylator" in the late 1950s (cited in [Suen 1980]). There has been a 
flurry of recent activity due to the predicted economic viability of pen-based comput- 
ers, though such predictions have yet to come true. 

Previous work in this area can be divided between on-line and off-line handwrit- 
ing recognition systems. Off-line recognition, similar to optical character recognition 
(OCR), recognizes writing that has been scanned from paper. On-line systems recog- 
nize handwriting that is transmitted by an electronic tablet and stylus in real-time. Off- 
line recognition has the limitation of not having access to data concerning the ordering 
and timing of the strokes and the pen up/down events. On the other hand, unlike the 
on-line case, off-line recognition is not limited by the constraints imposed by real-time 
interactive responses and, if running on a portable pen-based computer, smaller mem- 
ories and slower processing speeds. A good review of handwriting recognition, both 
on-line and off-line, is given in [Senior 1992]. More complete reviews of handwriting 
recognition can be found in [Suen 1980; Tappert 1990]. 

Most of the on-line work is based on calculating features found in an imaginary 
rectangle, called a frame, that circumscribes the character under consideration. The 
algorithms then differ on which features they calculate, how they recognize characters 
based on those features, and how the characters are combined to recognize words (e.g., 
use a dictionary for context or treat the characters separately). Some of the early work 
was based on zoning [Hussain 1972]. This technique divides the frame into several 
zones and calculates a feature based on the densities of points in these different regions 
and the order in which the zones were crossed by the pen stroke. This same technique 
is used for the architectural sketch and gesture recognition used by the Electronic 
Cocktail Napkin [Gross 1994] described in Section 7.5. 
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Handwriting recognizers have finally gotten to the point where decent recogniz- 
ers are being sold either to manufacturers to include in their products or directly to the 
end-user to add on to an existing pen-based system. For example, the original cursive 
handwriting recognition engine for the Apple Newton was developed by a Russian 
firm, ParaGraph [Bylinksy 1993]. More recently, the Motorola Lexicus cursive hand- 
writing recognition system, which is based on neural networks, has become available 
as an add-on for several different stylus-based platforms [Hutheesing 1996]. Finally, 
several shorthand recognizers are also available (see Section 7.6.2.1). 

The relationship between the accuracy of handwriting recognizers and user satis- 
faction has been shown to be highly task dependent [Frankish 1995]. For example, if 
handwriting recognition gives a significant benefit in completing a task, users will tol- 
erate errors. In addition, users demand a higher level of accuracy for work that will be 
passed on to a superior than they would for personal notes or passing information to an 
assistant or colleague [LaLomia 1994]. 

7.6.2.1       Shorthand 

Due to the problems with handwriting recognition accuracy, there have been several 
attempts at using new alphabets that are faster to use and more easily recognizable by 
the computer. Unistrokes [Goldberg 1993], a research prototype from Xerox PARC, 
uses an alphabet in which the letters have been reduced to symbols that can be easily 
drawn and recognized with a single stroke of the pen. In addition, the more common 
letters (based on English language usage) have been mapped to single line strokes, 
which can be drawn very quickly. Unistrokes is based on the same principle as a stan- 
dard typewriter keyboard: after learning the strokes (keyboard layout), an expert user 
can enter text very quickly, but by looking at a cheat sheet (looking at the key caps) 
novice users can also use the system, but at a much slower rate. Another research sys- 
tem was Apple's T-Cube [Venolia 1994], which used single stroke gestures and pie- 
menus, which addresses the user learning question ignored by Unistrokes, to enter 
characters with a stylus. 

A commercial product, Graffiti [Fitzgerald 1994; Lee 1994], was quick to follow 
the research prototypes. It is much easier to learn than Unistrokes since it uses strokes 
that are more similar to the standard English alphabet, but it is not as fast to use nor as 
accurate. It is not as fast since it does not do as much optimization of the strokes for 
the most common characters. It is not as accurate since it does not use an alphabet that 
was designed for easy machine recognition. Unlike T-Cube, both Graffiti and Unis- 
trokes can be used without looking at the screen, thus speeding up transcription or 
allowing the user to pay attention to a speaker. Graffiti is now available for most of the 
popular PDAs. The single stroke gestures used by SILK can be considered a shorthand 
for their more complicated multi-stroke counterparts. 
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7.6.3      Sketch Recognition 

Negoponte defined sketch recognition as: 

the step by step resolution of the mismatch between the user's intentions (of which he himself 
may not be aware) and his graphical articulations. In a design context, the convergence to a 
match between the meaning and the graphical statement of that meaning is complicated by 
continually changing intentions that result from the user's viewing his own graphical state- 
ments. [Negroponte 1971] cited in [Negroponte 1973] 

Negroponte's HUNCH [Negroponte 1973] was one of the early attempts at using 
inferences about a sketch to transform it into a more finished design. This architectural 
design system recorded stylus data from a pressure sensitive tablet. The system tried to 
make inferences of the user's intention at three hierarchical levels: what was meant 
graphically, in 2-D, what was meant physically, in 3-D, and what was meant architec- 
turally. The system used heuristics to make some simple 2-D inferences, such as find- 
ing lines and corners. The rate of drawing a shape was used as a heuristic to determine 
whether a shape should be "cleaned-up" (such as making a square regular), left as is, 
or possibly used as a gesture. The system would not interfere with the designer until 
asked or triggered by recognized conflicts. HUNCH was meant to be "compatible with 
any degree of formalization of the user's own thoughts." 

Another early sketch recognition system tried to rely on batch processing after 
the sketch was completed [Pavlidis 1985]. This work in scene beautification tried to 
"clean up" a completed drawing that had been roughly sketched by satisfying the 
inferred graphical constraints in the scene. Often, this method does not infer all of the 
proper relationships on the first attempt and the operation of beautifying is not idem- 
potent, thus leaving designers in the dark on how many times they need to execute the 
beautifier to achieve the desired results. Trying to infer all possible relationships in a 
scene at once is much harder than trying to infer only the relationships between one 
object and the rest of the scene. In order to make this problem more tractable, more 
recent work has tried to make inferences as the sketch was drawn [Karsenty 1992]. 
SILK takes the same approach: by getting user assistance as each object is drawn, 
SILK further improves the speed and accuracy at which it can infer the correct wid- 
gets. 

There has been a considerable amount of sketch recognition work done in the 
field of computer graphics. Like Negroponte's HUNCH, these systems are often meant 
to allow designers to create 3-D objects using a 2-D sketching interface. Examples 
include the SKETCH [Zeleznik 1996] system described previously (see Section 7.5), 
the IDeS system [Branco 1994], and the early work described in [Hosaka 1977]. A 
general review of the area is given by [Wang 1993]. 
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7.6A      Gesture Recognition 

Buxton performed much of the important work in gesture recognition [Buxton 1986]. 
More recent work by Rubine at CMU [Rubine 1991b; Rubine 1991c] has been used in 
SILK. Rubine's algorithm uses statistical pattern recognition techniques in order to 
train classifiers and recognize gestures. These techniques are used to create a classifier 
based on the features extracted from several examples. In order to classify a given 
input gesture, the algorithm computes the distinguishing features for the gesture, and 
returns the best match with the learned gesture classes. This algorithm is limited to sin- 
gle-stroke gestures. 

Unless a gesture set has a paper-based counterpart that the user is already famil- 
iar with, such as copy-editor marks, gestures can be hard to learn. Kurtenbach's mark- 
ing menus are a novel attempt at making gestures self-revealing [Kurtenbach 1991a; 
Kurtenbach 1991b]. Marking menus combine gesture recognition with pop-up pie- 
menus [Callahan 1988]. Beginning users select a command from a series of pop-up 
pie-menus, while more advanced users can make a fast gesture that requires the same 
physical movements as required to traverse the pie-menus. The difference is that the 
advanced user performs the movements fast enough so that the menus never appear. 

Gesture recognition is an important component of many of the pen-based inter- 
faces discussed previously (see Section 7.4). The selection of a useful gesture set was 
one of the main topics of many of the listed research projects. In addition, I observed a 
considerable amount of user-testing of the gesture set for PenPoint when I interned 
with the GO Corporation in the summer of 1990. 

7.6.5      Diagram/Shape/Image Recognition 

Diagram editing is one of the common applications envisioned for pen-based comput- 
ers and this area is quite similar to the sketch editing done with SILK. There have been 
several attempts at building diagram editors based on either gesture recognition (see 
Section 7.6.4) or visual languages (see Section 7.6.6). The thesis work of Zhao was an 
attempt at integrating both approaches [Zhao 1993a; Zhao 1993b]. The key idea is to 
use the diagram syntax to improve the low-level recognition. Unlike most visual lan- 
guage parsers which consider a complete picture as input, Zhao's system uses an incre- 
mental approach and also recognizes shapes that are made up of multiple-stroke 
gestures, independent of pauses between strokes. The system is based on the coopera- 
tion of two components. First, a low-level recognizer determines the class of symbols 
drawn [Zhao 1992]. Then, if certain spatial constraints are met, a high-level recognizer 
transforms the symbols into editing commands, thus allowing the system to work with 
an editor that is ignorant of the sketch recognition being performed. The incremental 
approach and the partitioning of the recognition into two pieces is very similar to what 
is done in SILK, although Zhao's system regularizes the shapes as they are recognized. 
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A multi-stroke shape recognition algorithm is also used in the Graphic Diagram 
Editor (GDE) [Apte 1993b]. Unlike Zhao's system, this shape recognizer uses a vari- 
able length time-out after each stroke, proportional to the size of the preceding stroke, 
to identify which strokes belong to which objects. A time-out solution is easy to imple- 
ment, but it is unclear how well this works in practice. In addition, they compute the 
convex hull of the strokes in order to close objects in which the strokes are not con- 
nected. The recognizer uses a set of weighted filters to recognize six basic geometrical 
shapes - thus, their recognizer is not very flexible, nor easily extendable. GDE was 
implemented on top of the PenPoint operating system [Carr 1991; GO 1992]. The 
algorithm achieved a recognition rate of 98% on the six supported shapes when ten 
subjects were each asked to draw twenty examples. Again, like Zhao's system, GDE 
regularizes the shapes as they are recognized. 

The PerSketch system [Saund 1994] is a novel attempt at exploring WYPIWYG 
(What You Perceive Is What You Get) image editors. That is, they adopt methods from 
computer vision to recognize several alternative image structures, just as a human may 
perceive an image in several different ways. For example, four separate lines forming a 
rectangle may be perceived as four lines or as a rectangle. Both inferences are valid 
and the PerSketch system would allow the user to manipulate the image with opera- 
tions that make sense for either inference. Since the system tries to mimic how people 
would perceive the drawing, it would even allow manipulating the individual sides of a 
rectangle that was originally drawn with one stroke of the pen. "Pose matching" 
enables users to select among several interpretations by using a gesture to indicate the 
location, orientation, and elongation of the intended object. 

Finally, there has been a considerable amount of work exploring visual lan- 
guages and pen-based UIs at the University of Colorado. In addition to the work on 
recognizing architectural sketches (see Section 7.5), researchers at Colorado have 
explored diagram recognition for the capture and editing of visual languages on pen- 
based computers [Citrin 1995; Citrin 1996]. Informal experiments suggest that pen- 
based UIs are better than traditional palette-based interfaces for this domain [Apte 
1993a; Citrin 1993]. The Colorado group had the novel idea of using inexpensive, 
early-model Apple Newtons as a pad-based input mechanism for a diagram editor with 
a recognizer running remotely on a desktop computer. The PDA performs low-level 
shape recognition, while the back-end computer performs higher level semantic recog- 
nition of the diagram using the Electronic Cocktail Napkin (see Section 7.5) as a rec- 
ognition engine. 

7.6.6      Visual Languages 

Visual languages are another technique that can be used to recognize sketched input. 
Visual programming systems support languages that allow the user to specify a pro- 
gram in a two-(or more)-dimensional fashion [Myers 1990b]. Most visual program- 
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ming systems are grammar-based and generate a parser from the definition of the 
grammar, which may be textual. This section gives an overview of the important work 
in the area and also discusses vmacs, a design system that is supported by visual lan- 
guage parsers. 

Lakin's vmacs [Lakin 1986; Lakin 1989] was intended as an electronic design 
notebook for engineers. The system has been under development for many years and is 
currently offered as a commercial product. Like Kramer's system and Kolli's proposed 
Ideator (see Section 7.5), vmacs focuses on conceptual design. It allows the user to 
write or draw whatever they want. Later, the user can choose the appropriate visual 
language parser to add interpretation to different sections of the design. This is very 
similar to Kramer's dynamic interpreters, but lacks the sketch-based input and instead 
relies on mouse and keyboard. The system tries to be very flexible ("every graphic act 
which is not prohibited is permitted") and agile ("agility... requires touch-typing"). 

One way to parse a visual language is to allow the user to produce a picture using 
a standard visual editor. The picture and a description of the visual language are then 
fed into a "spatial parser," producing a structure analogous to a parse tree for textual 
languages [Golin 1990]. This was the approach taken by the Visual Programmer's 
Workbench [Rubin 1990], an attempt to develop a set of tools for visual languages 
analogous to the editors, lexical analyzers, parsers, compilers, and debuggers for text- 
based programming languages. 

Since visual languages typically express their semantics using relative relation- 
ships, such as relative position, containment, or connectivity, language grammars that 
include graphical constraints [Helm 1991] appear to be a promising way to build 
visual language parsers. Most of the rules for SILK's widget recognition can be 
defined in terms of graphical constraints. It is possible that these rules could have been 
made declarative and then a constrained set grammar used to produce a parser. Unfor- 
tunately, these parser generation tools were not available for the programming envi- 
ronment I chose to use, Common Lisp and Garnet. 

Commercial systems employing visual languages include Serius (reviewed in 
[Landay 1991]), LabVIEW [Instruments 1989], and Prograph [Pictorius 1995]. More 
complete surveys of visual languages can be found in [Chang 1986; Chang 1987; Shu 
1988; Myers 1990b]. 
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7.7      Behavioral Specifications 
SILK's storyboarding mechanism is based on specifying screen shots from before and 
after an end-user action. Chimera [Kurlander 1993] and Pursuit [Modugno 1993; 
Modugno 1995] are both based on the before-and-after cartoon strip metaphor. SILK 
differs in that it allows the designer to specify what these actions are, rather than trying 
to infer this information from examples, as is done in Chimera and Pursuit. These sys- 
tems are successful doing inferencing in their domains, graphical editing and graphical 
shell file operations, respectively. 

SILK storyboards are similar to finite state transition diagrams. These diagrams 
have been used for UI specifications in the past, but have fallen into relative disuse 
because of problems with the exponential blowup of the specification and an inability 
to handle the dynamic nature of direct manipulation user interfaces. Statecharts [Harel 
1987] overcome many of the problems of finite state transitions diagrams by adding 
hierarchy, concurrency, and communication. Wellner's Statemaster [Wellner 1989] is a 
UIMS that uses Statecharts for dialog specification. The proposed parallel storyboard 
extension to SILK tries to attack the state explosion problem in a way that is similar to 
Jacob's use of independent embedded state diagrams per object [Jacob 1986]. Again, 
SILK is not intended for creating the entire specification, but instead to illustrate the 
key sequences in the interface under consideration. 

Two other relevant end-user programming systems are Agentsheets [Repenning 
1992; Repenning 1993] and KidSim [Cypher 1995] (now called Cocoa). Both of these 
systems use graphical rewrite rules to allow the creation of dynamic simulations. The 
rewrite rules specify a graphical pre-condition that must be met. When it is met by the 
state of the screen, the screen state is changed by the graphical action specified in the 
rewrite rule. These systems focus on animated simulations, whereas SILK concen- 
trates on end-user actions and the changes to the UI state that should occur upon those 
actions. 

7.8      Inferring Constraints 
Peridot [Myers 1986; Myers 1988] was one of the first tools to apply artificial intelli- 
gence (AI) techniques to aid in the construction of user interfaces. The user first draws 
widgets using a drawing tool that is similar to a standard structured drawing editor. 
Peridot then allows the user to specify much of an application's widget behavior by 
demonstrating how the widgets behave in response to end-user input. The system uses 
a simple rule system to make its inferences. SILK is similar in that it uses a rule system 
to infer the widgets, which have previously defined behaviors. Other demonstrational 
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user interface tools that have followed in the Peridot tradition include Lapidary [Myers 
1989], Druid [Singh 1990], Demo [Wolber 1991; Fisher 1992], and Marquise [Myers 
1993]. 

One of the major complaints about Peridot was that it confirmed its inferences by 
asking questions. One of the principles behind SILK's design is that the inferences of 
the system should be kept out of the designer's way until they have a need to deal with 
the actual widget behavior. SILK indicates its inferences by both enabling a radio but- 
ton that indicates the type in the SILK controls window and by allowing the widget 
to behave when the designer manipulates it. Marks or symbols layered on top of the 
interface were used for feedback indicating graphical constraints in Briar [Gleicher 
1994] and Rockit [Karsenty 1992]. In Rockit, the marks kept the user informed of the 
current inference of the system. This approach may be worth trying with SILK. 

7.9      Summary 

This chapter reviewed the large body of research related to electronic sketching and 
storyboarding. This body of work was focussed in areas relevant to SILK, such as 
sketching, user interface tools, informal interfaces, pen-based user interfaces, recogni- 
tion technologies, and behavioral specifications. My research is unique in that it com- 
bines these technologies, which permits designers to benefit from the advantages of 
both sketching and electronic tools in the early stages of user interface design. 



CHAPTER 8 

Future Work 

Previous chapters have outlined potential engineering extensions to SILK that would 
improve the usability and functionality of the tool. While most of the previous discus- 
sion considered additions that are simply a matter of implementation, this chapter con- 
tains a discussion of those extensions that require solving difficult research problems. 
The chapter closes with a few ideas on how to extend the ideas embodied by SILK to 
other domains. 

8.1       Extensions to SILK 
Most of the potential improvements to SILK involve easing the specification of new 
interactive behaviors. The other proposed improvements would allow SILK to fit in 
more closely with the way people currently work: collaboratively and on paper. This 
section discusses these improvements in more detail. 

8.1.1       Specifying New Widget Behaviors 

Recognizing new widgets refers to two related problems that are not yet solved in 
SILK: recognizing known widgets that are sketched in a manner that differs from the 
possibilities incorporated by SILK's rules and learning to recognize new widgets of 
the user's own design. Machine learning is a possible answer to both of these prob- 
lems, and a few techniques for learning new rules were discussed in Section 3.7. The 
Electronic Cocktail Napkin [Gross 1996] shows that it is possible to build a system 
where the designer guides the system and thus permits the learning of new relation- 
ships and rules. 

In a system that depends on the interactivity of the recognized objects, as SILK 
does, simply learning to recognize new objects is insufficient. The system must also be 
instructed on how the new widgets will behave. The informal design survey (see Sec- 
tion 2.2.3) showed that designers often want to draw new widgets whose behavior is 
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analogous to that of a known widget. For example, designers frequently need to draw 
a new icon and specify that it should act like a button. 

There are two interesting ways to make use of analogous behaviors. First, a user 
could train SILK to recognize a new widget and then inform the system that its behav- 
ior is analogous to that of an existing widget. The system could then try to infer which 
components of the two widgets serve the same purpose and thus infer how the individ- 
ual components of the new widget behave. For example, the user may inform the sys- 
tem that the slider in Figure 8-1 is similar to a scroll bar. The system would then infer 
that the triangle is analogous to the scroll bar's elevator, free to move up and down 
from the top to the bottom of the rectangle. 

The second solution relies less on inferencing and requires more direct involve- 
ment by the designer. After pointing out the analogous widget, the designer would 
select (using direct manipulation) the mappings between the components in the two 
widgets. The system would again try to infer how to adapt the existing behavior to the 
new widget. The interesting research lies in how to successfully perform these infer- 
ences and in finding a good interface for selecting analogous widgets and components. 

Figure 8-1. A user-defined slider - the triangle can slide up and down next to the rectangle. 
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8.1.2      Explicit Widget Type / Behavior Specification 

There are two promising alternatives to recognizing user interface widgets. The first is 
to have the designer explicitly specify the widget type for a group of sketched objects. 
The second technique involves having the user specify the abstract behaviors that a 
group of objects should support. These methods are discussed in turn. 

Requiring the designer to explicitly specify the type for all the interactive wid- 
gets in a sketch is a tempting alternative to a possibly error-prone recognition process. 
Explicit type specification would eliminate the problem of incorrect widget types, it 
would allow the designer to concentrate on the sketch without paying attention to 
SILK's inferences, and after sketching it only requires the designer's intervention on 
the set of objects that need interactive behaviors, alleviating the need for decoration 
mode. The problem with this technique is that it introduces a new inference problem: 
inferring how the given objects operate given the specified type. For example, if the 
designer draws an icon with a text label below it and calls it a button, the system must 
infer what to highlight when the mouse is held down on this button. This inference 
problem may or may not be easier than having to infer the type of sketched widgets 
and learning how to recognize new widgets. Another problem is that the designer may 
now have to do more work than with a recognition system that rarely errs. 

The second technique, explicitly specifying abstract behaviors, trades-off the 
inference problem with more work for the designer. Using this method, a designer 
would attach low-level behaviors to individual widget components. For example, the 
designer may attach "highlight on mouse-down" to the icon part of the new button 
described above. Other supported behaviors may include slide (e.g., scroll bar) and 
pop-up (e.g., menu). Supporting the state encoded in radio buttons may be a bit harder. 
Again, the main drawback of this method is the designer has to spend a considerable 
amount of time attaching low-level behaviors to widgets that may be easily recognized 
and have known behaviors. A compromise may be to combine the two methods 
together for use in different situations, i.e., specify widget types for standard-looking 
widgets and specify low-level behaviors for custom-looking widgets. 

Both of these explicit specification methods could be combined with the analo- 
gous behavior method described in Section 8.1.1 for specifying the new behaviors. 
Another possibility is to simply pick the types/behaviors from a list or palette. Deter- 
mining if these techniques are better than widget recognition depends on how well the 
recognition engine works in practice. If the recognition rate is so low that it generally 
gets in the way of designers, one of these alternatives may work better. The recogni- 
tion achieved during the SILK usability test (see Chapter 6, "Evaluation") is certainly 
too low, but it remains to be seen how well this could be made to work using some of 
the learning techniques described in Section 3.7. 
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8.1.3      Extending Storyboards 

Another way to specify new behaviors is to storyboard them. The storyboarding exam- 
ples given previously were for showing dynamic behavior between different widgets 
and screens, but storyboarding can also be used to specify the behavior of a single wid- 
get. For example, Figure 8-2 shows the screens and transitions necessary to define the 
behavior of a two-item radio button panel. The behavior of new widgets can be added 
in a similar same way. 

Figure 8-2. Storyboard to illustrate the behavior of a pair of user-defined radio buttons. Note that 
SILK's built-in radio buttons have a similar behavior by default. 

8.1.3.1       Hierarchical Storyboards 

The problem with this approach is that it would lead to a large blow-up in the number 
of screens for any storyboard containing a widget defined this way. One solution is to 
support hierarchical storyboards. The designer would first attach a storyboard to a 
region of a given screen. For example, to use the radio button illustrated in Figure 8-2, 
the designer would attach the storyboard to the region containing the radio button. 
Then, any use of the radio button in another (higher-level) storyboard would transpar- 
ently include the attached definition for the radio button's behavior. When the resulting 
interface is tested, any events that occur within the bounding box of the radio button 
will be handled by the radio button's associated storyboard and the screen transitions 
would only affect its portion of the screen. This is a generalization of the technique 
used by participants 9 and 15 during the SDLK usability test (see Section 6.2.1.2). 

The same hierarchical design could be used to implement a palette of tools. The 
harder research problems occur when the designer wishes to make a screen transition 
that depends on the state of one of these newly defined widgets. For example, imagine 
the user clicks on the drawing area in the screen illustrated in Figure 4-6 on page 65. 
The designer would like to create either a rectangle or a circle depending on the state 
of the palette. Currently, this cannot be specified for even SILK's built-in widgets - 
finding a way to specify this easily is an open research question. 
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8.1.3.2      Drag Events 

A previous discussion (see Section 4.7.4) centered on ways to extend SILK's story- 
boarding model to support other input events (e.g., double click and timer). The neces- 
sary changes to the storyboarding model needed for these events are quite 
straightforward: add new arrows types for different kinds of events. 

Drag events are not easily supported by this proposed extension. For drags that 
are constrained to follow a path, the designer could simply draw a new drag arrow 
from the object in question along the path the object must follow. This would work for 
defining the elevator in a scroll bar (as seen in Figure 8-3). It is unclear what the 
designer could use to indicate that the object may be dragged anywhere in a specified 
region, rather than constrained to a single path. 
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Figure 8-3. Proposed drag arrow specifies dragging a scroll bar elevator within the scroll bar. 

Similarly, for drag and drop, the end-point of a drag and drop arrow could indi- 
cate the target object that can be dropped on. A connected arrow from the target object 
could indicate the transition that should take place after the original object has been 
dragged and dropped on the target object. For example, Figure 8-4 shows how a 
designer might illustrate filling in the region of a blob by dragging and dropping a 
paint can on the blob. This definition of drag and drop has a similar problem to that 
described previously for drag. How does the designer indicate that the object can only 
be dragged within a specified region? It may be enough to simply parameterize drag & 
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■:. SILK Storyboard K vm 
Edit  Sketch 

Figure 8-4. Proposed drag and drop arrow (left) indicates that the paint pail can be dropped on 
the blob to the right of it. Connected arrow (right) indicates that a screen transition should be 

made after the drop has occurred - in this case filling the blob with paint. 

drop arrows such that the dragged object must either follow the path of the arrow or be 
permitted to move anywhere on the screen (but only dropped on the target object). 

The difficult research problem is in determining which interactive behaviors are 
necessary for prototyping in the early stages of design. The goal of SILK was to make 
rough storyboarding quick and easy. This is why only single clicks are currently sup- 
ported. If the system were to support all of the common interactive behaviors (e.g., the 
six interactive behaviors included in the Garnet interactor model [Myers 1990a]), sto- 
ryboarding could become overly complex - thus hard to learn and time-consuming to 
use. If well-designed, it is possible that a more powerful storyboarding language could 
be learned incrementally. This is an exciting area for new research. 

8.1.3.3      Multimedia Support 

The timer event (proposed in Section 4.7.4) can help a designer mock-up a video 
application by representing the video as a sequence of rough sketches that automati- 
cally transition after a time-out. Representing audio output in an interface would also 
be easy if SILK included an interface for recording sound from a mike. In the spirit of 
SILK's rough prototyping model, the designer would use speech to simulate non- 
speech audio cues (e.g., saying "boom" to represent the sound of an explosion). Draw- 
ing arrows to icons representing the recorded sounds (stored below the associated 
screen) would indicate which event should cause the sound to be played back. Finally, 
researchers in speech recognition have expressed an interest in using SILK story- 
boards to prototype the dialog control in speech recognition applications. 
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8.1.3.4      Generating Program Structure from Arrows 

One open-ended research problem is how to take better advantage of the program con- 
trol indicated by the arrows in storyboards. That is, can program structure be derived 
from the transitions used by a designer in a SILK-based prototype? Solutions to this 
problem have two different applications. First, can the arrows be used to infer more 
general behaviors at storyboarding time and thus reduce the complexity of the story- 
board needed to illustrate a given behavior? An example of this (as discussed in Sec- 
tion 4.7.2) is to infer that the rectangle in Figure 4-1 on page 57 should be rotated 60 
degrees each time the button is pressed. It would be challenging to build a system that 
can both make these inferences and give good feedback to the designer about the 
results. 

The second area that may be helped by analyzing arrow transitions is in improv- 
ing the output of SILK's transformation process (see Section 5.2). Can the arrows be 
used to generate the source code for callbacks in the final application? This may be 
easy for dialog boxes and simple screen changes, but quite hard for more sophisticated 
behaviors. The question of how do this or deciding whether the transitions even mimic 
part of the callback structure are both open issues. 

8.1.4       Collaborative Design Support 

In addition to making SILK more powerful for the individual designer, it may be fruit- 
ful to consider that interface design is generally a group task. I have seen this in the 
design literature, in the comments collected during the designer survey (see Chapter 2, 
"Informal Survey of Designers"), and by speaking with designers. Many of these 
designers have pointed out the need for using design tools collaboratively. For 
instance, one designer wrote, "The entire engineering team must be able to see it and 
work with the sketch." As mentioned earlier (see Section 5.1), one way to support 
group work is by having annotation layers for different members of a design team. If 
these team members are sharing the same design file, then access and revision control 
mechanisms are necessary. 

As a design becomes more complex, simple drawn and written annotations may 
not be enough. Members of the design team may wish to attach multimedia annota- 
tions, such as speech, video, and animations. It is important to study what types of 
annotations are needed and how they can be easily created, maintained, and viewed by 
all members of the team. It may also be important to make viewing a context-sensitive 
operation so that individual team members are initially shown only the annotations and 
level of design detail that are particularly relevant to them. Determining how to easily 
specify and infer such filtering properties is an open area of research. 
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In some cases this support for asynchronous design may be enough. But, often 
group design occurs synchronously. There are two cases that must be considered: sup- 
porting design teams that are collocated (that is, working in the same room) and sup- 
porting design teams that are distributed at remote locations. In the first case, SILK 
could be extended to support multiple input devices (e.g., two pens) working at the 
same time. Another avenue of research is the use of speech recognition to improve the 
inference engine results. The hypothesis is that if multiple designers are working 
together, one may speak about what she is designing while sketching. Doing simple 
keyword spotting on this speech may permit SILK to make its inferences with a higher 
level of confidence. 

As in the collocation case, multiple remote designers may wish to work on the 
same design at the same time. Shared whiteboard tools have shown that this basic 
functionality is not too hard to support. The difficulty comes in managing the work. 
For example, which designer controls the floor at any one time? If the designers were 
in the same room, they would use voice and other physical cues to enforce this control. 
The important research issue is finding a proper floor control mechanism that does not 
constrain this highly creative task. 

SILK's storyboarding mechanism could prove useful for communicating a 
design idea to a remote collaborator, much in the way that I have shown it was useful 
in the case of collocated designers and engineers. The existing feedback mechanisms 
(i.e., highlighting screens, objects, and transitions in the storyboard) would help 
inform the remote user on what was causing the screen transitions and the visual lay- 
out of the storyboard would help when giving overviews of the organization and struc- 
ture of a design idea. 

■*&* 

There is a considerable amount of previous work in the field of collaborative 
work, especially for supporting meetings. Finding techniques from this work that are 
general enough for use with interface design would be the best approach for adding 
collaborative support to SILK. SILK may change considerably, as it seems that when 
multiple users are added to a design task, the problems have less to do with the design 
tool itself and more to do with supporting an environment for communicating design 
ideas and for storing and retrieving previous ideas and comments in an easily accessi- 
ble design repository. 
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8.1.5      Paper-based Sketch Support 

Another possibility for better supporting collaborative design situations is to integrate 
SILK with existing paper-based sketches. This way designers can get the advantages 
of paper in meetings: paper is very portable and easy to share. Later, the paper can be 
scanned in, line following algorithms can be used to transform the scanned bitmaps to 
strokes composed of point vectors, and then SILK's inferencing algorithms can be per- 
formed on the strokes. The design can now be treated as if it was drawn on-line. The 
designer can check the widgets and perform any necessary corrections. At this stage, 
storyboard transitions can be added and the designer now has an interactive prototype. 
What would be lost though is the interaction with the designer which helps to improve 
the inference capabilities of the system. 

8.2      Additional User Studies 
Although paper-based sketching clearly has some advantages over computer-based 
tools, the SILK usability test (see Chapter 6, "Evaluation") showed that designers 
could use SILK for designing real user interfaces. In addition, the test showed that the 
designers liked the roughness afforded by electronic sketching as well as the interac- 
tivity achieved using storyboards. Further user studies could help demonstrate more 
firmly which components of SILK are most important for effective interface design. 

For example, a two condition study, one with storyboards and one without, could 
help determine how important electronic storyboarding is to the design and communi- 
cation of interfaces ideas. Another study might compare versions of SILK with and 
without widget recognition. This would help to more accurately determine whether or 
not the existing recognizer is helpful. Similarly, a Wizard of Oz study could be per- 
formed to determine how well a perfect recognizer would work. That is, one of the 
experimenters would supply SILK with the correct recognition inferences in real-time 
so that it appeared as if the system made no inference errors. Finally, comparing SILK 
to a version that cleaned-up the sketch would help to determine how important the 
roughness of the sketch is for both the designer and eventual design reviews. 

In addition, as SELK is made more robust, it could be directly compared to an 
existing design tool (e.g., Director). One such experimental design is to have two 
groups of designers perform a design task, half using SILK and half using the com- 
mercial tool. A comparison of design time, number of different designs produced, 
complexity of the designs, quality of the final designs, and subjective ratings by the 
designers could help establish whether SBLK is a better tool for early stage user inter- 
face design. A similar study could be performed to compare SILK with paper-based 
sketching. Finally, a hybrid study would compare SILK and paper to a suite of tradi- 
tional tools (e.g., paper, Illustrator, and Director). 
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8.3      Domains for Informal Communications 
In addition to SILK's use in the early stages of user interface design, the same core 
techniques can be used in a range of other applications. This section contains a discus- 
sion of two such potential applications. Like SILK, these applications work well as 
tools for informal communications. The first application, Web page design, is very 
similar to user interface design. The second application, interactive dynamic presenta- 
tions, is quite distinct from UI design. 

8.3.1 Web Page Design 

Web page design is quite similar to user interface design. Both web page design and 
UI design are about communicating information through an interactive medium. Both 
mediums take advantage of interactive widgets (e.g., scroll bars and buttons) and both 
must be designed with the visual presentation in mind. The main difference is that web 
pages tend to be more document-oriented than conventional application software and 
that the primary model for moving between web pages is the single click of a hyper- 
link (e.g., a button). 

The fact that web page design is related to document design has led to a strong 
market for graphics design professionals in this new on-line realm. As discussed previ- 
ously, these designers are trained to make rough sketches when designing documents 
to get a good idea of what the overall structure of the document will be before focusing 
on the details. This is exactly the same design model that SILK supports. In addition, 
the web hyperlinks correspond directly to SILK's storyboard arrows. The only major 
change necessary to support web page design would be transforming the SILK story- 
board to HTML (the language for specifying web pages). Additional web-specific wid- 
gets could be added as necessary. For example, Figures 8-5 and 8-6 illustrate a rough 
version of the CNN Interactive page (http: / /www. cnn. com/) from October 19, 1996. 
No changes to SILK were necessary to mock-up these web pages. 

8.3.2 Informal Dynamic Presentations 

The attractive features of SILK - speedy creation, rough presentation, and ease of 
illustrating interactive behaviors - are useful for domains other than interface design. 
A new application, which I term informal dynamic presentations (IDPs), involves 
using computer-based media as a visual aid in lectures, meetings, and computer-based 
tutoring. Unlike existing presentation applications, IDP tools would be oriented 
towards allowing portions of the presentation to have dynamic behavior. For example, 
a presenter may be able to demonstrate a working simulation of a mechanical part 
inside of a slide to illustrate how the part works. A user of an IDP tool would be able to 
manipulate other common presentation objects (e.g., graphs, flow charts, and organiza- 
tional charts) on the fly. 
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Figure 8-5. First screen for rough mock-up of CNN's web page. 

;iSILKSIoryboard 

Mit   Sketch 

'. Yvltsin »ovaa c« replaca L*b*d   : 

Figure 8-6. Storyboard for rough mock-up of CNN's web page. 
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The main difference between this proposed tool and existing tools would be an 
orientation towards design and manipulation at presentation time. Since most people 
can sketch rough drawings faster than building finished-looking versions with a draw- 
ing program, the necessary diagrams could be sketched very quickly. In addition, sto- 
ryboards could be used to rapidly illustrate behaviors. Thus, the user could make rough 
sketches for the dynamic models and specify their behavior interactively - before or 
possibly during the presentation. In addition, these models, like user interfaces, are 
intended to support several different behaviors on any one slide, depending on the 
dynamic needs of the talk. This is in contrast to existing presentation tools which pro- 
mote a linear presentation of slides. 

SILK's rule system could be adapted for recognizing common presentation dia- 
grams (e.g., charts and graphs), so as to immediately support some common presenta- 
tion-time behaviors. For example, clicking on a node of a graph might enlarge it and 
thus focus attention on it. In addition, the storyboarding mechanism could be used to 
illustrate other manipulations as needed. Lightweight dynamic presentation tools 
could open up a new area of interesting research. 

8.4      Summary 

There are several interesting, yet challenging, extensions that can be made to SILK. 
These range from improving SILK's ability to illustrate behavior to using more of the 
information embedded in storyboards when transitioning to another tool later in the 
design process. This chapter has made a brief attempt to describe some of the prob- 
lems that must be solved for these extensions to be viable as well as describing other 
new domains for SILK's informal communications model. 



CHAPTER 9 

Conclusions 

This chapter summarizes the problems and successes of SILK's approach to user inter- 
face design. In addition, the contributions of the research are reviewed. 

9.1       Benefits of SILK's Approach 
The design of SILK was based on discussions with the intended users of the system. 
Through questionnaires and site visits, hand-drawn sketches and storyboards were 
found to be common user interface design tools. Designers reported that current user 
interface construction tools are a hindrance during the early stages of interface design. 

SILK overcomes these problems by allowing designers to quickly sketch an 
interface using an electronic stylus. Unlike paper sketches, SILK's storyboards allow 
the designer or test subjects to interact with the sketch before it becomes a finalized 
interface. The SILK usability test showed that designers saw a lot of promise in elec- 
tronic sketching and storyboarding - they were able to investigate multiple interface 
designs quickly. The usability test also illustrated that electronic sketches and story- 
boards encourage a useful dialog between interface designers and software engineers. 
Together, they can smoothly view, test, discuss, and modify early design ideas. An 
interactive sketching tool that supports the entire interface design cycle has the poten- 
tial to enable designers to produce better quality interfaces in a shorter amount of time 
than current tools. 
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9.2      Limitations of SILK's Approach 
SILK has a number of limitations, some that were not within the scope of this research 
and some that were. This section first delineates some of the areas in which this work 
was not intended to contribute and then discusses the inherent limitations of the 
approach. 

9.2.1 Outside of Research Scope 

There are simply too many important facets of a design tool to study all of them within 
the confines of a Ph.D. thesis. However, many of these issues are essential to a func- 
tioning system. Thus, a commercial system must provide some solution to most of 
these problems. First of all, there are no successful algorithms for multi-stroke gesture 
recognition available in the public domain. SILK used Rubine's single-stroke algo- 
rithm. This turns out to be primarily a limitation for recognizing rectangles. The dis- 
sertation discussed several possible solutions to this limitation (see Section 3.2.1.1). 

The thesis did not introduce any new artificial intelligence techniques for infer- 
ring widget types. Instead, a simple rule system was used. As discussed in Section 3.7, 
machine learning techniques would have been helpful for both inferring widgets from 
SILK's built-in set and for training the system to recognize new widgets that are drawn 
by designers. A better inference mechanism combined with a more robust gesture rec- 
ognizer would allow the designer to pay less attention to the results of the recognition 
process and instead concentrate solely on their design. 

Finally, SILK has no support for creating interfaces that include 3-D graphics, 
speech recognition, and audio/video output. Such multimedia interfaces have become 
more prominent since the start of this work. Other than 3-D graphics, SILK has the 
potential to help design interfaces that contain any of these other input and output 
modalities (see Section 8.1.3.3). 

9.2.2 Inappropriate Domains for SILK 

Although SILK was designed as a tool for early, creative, user interface design, there 
are some interface design tasks for which SILK's sketch-based approach is clearly 
inappropriate. For example, SILK would not be very useful for designing small 
changes to the interface of an existing product. The design team would be better served 
by making the changes to the existing product and trying the resulting system out with 
users. There are also specific application domains where SILK would not be helpful. 
These domains include non-visual interfaces, dynamic interfaces, and textual inter- 
faces. The rest of this subsection treats each of these in turn. 
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First, interfaces that are non-visual in nature, such as telephone interfaces or 
interfaces for the blind that rely primarily on speech recognition and audio feedback, 
will not get much help from a sketching tool. SILK could be used to help the designer 
structure their thoughts at a systems level, but the tool would be of no help when 
designing the actual speech/audio user interface. 

Second, while SELK's storyboarding model could be extended to support anima- 
tion, dragging, and other dynamic events, it is not clear that this model is appropriate 
for designing application interfaces that have few static elements and are primarily 
made up of time-varying information. Such applications include flight simulators, 
video players, or complex computer games. 

Finally, rather than supporting free-form text editing, SILK is oriented towards 
the interfaces found in graphical editors and simple forms-based applications. Thus, 
SILK would not be an appropriate tool for designing the interaction found in the work 
window of a word processor or spreadsheet. Fortunately, there are few examples of 
dynamic or text-based interfaces that do not include standard widgets around them. 
SILK could still be used for designing those parts of the user interface. 

9.3       Contributions 
SILK demonstrates that electronic sketches and storyboards can be successfully used 
to prototype user interfaces in the early stages of design. This section groups the spe- 
cific contributions of the research into concepts and techniques, artifacts, and experi- 
mental results. 

9.3.1       Concepts and Techniques 

To reach its goals, this dissertation introduced several new concepts and techniques. 
First, I developed a new methodology, electronic sketching, for designing user inter- 
faces. In addition, SILK's electronic storyboarding is a novel method for illustrating 
the behavior of a user interface without requiring conventional programming. SILK 
also includes feedback and editing techniques for manipulating these behavioral speci- 
fications, which are sorely lacking in current demonstrational and direct-manipulation 
systems. Finally, the sketch recognition system shows that in the domain of 2-D user 
interfaces it is possible to recognize common user interface widgets. The complete set 
of concepts and techniques are listed below. 
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Concepts and Techniques: 

•electronic sketching for UI design 

- gesture recognition for recognizing and editing primitive components 

- automatic recognition of sketched widgets 

- automatically adding basic interactive behavior to sketched widgets 

• electronic storyboarding 

- a way to add dynamic behavior to interface screens 

- a visual representation for storing related screens 

- using arrows for indicating screen transitions 

- graphical feedback at run-time to indicate what caused the last transition 

• design memory mechanisms 

- sketched, typed, and written annotations on designs 

- ability to search typed design annotations 

• screen transformations to real widgets in a standard look-and-feel 

9.3.2 Artifacts 

The research also produced two artifacts, the system itself and a widget recognition 
algorithm. SILK is the first tool designed for use during the early phases of interface 
design by professional user interface designers. By supporting the transformation of 
SILK sketches to a standard widget format SILK can assist all phases of the interface 
design cycle. The research produced a complete enough implementation for use by 
designers wishing to experiment with this new methodology. In addition, the disserta- 
tion includes a widget recognition algorithm that can be applied to other domains. 

9.3.3 Experimental Results 

The dissertation also describes several experimental results. First, the informal survey 
of designers illustrates that designers are dissatisfied with the existing tools and meth- 
ods used in the early stages of user interface design. Usability testing shows that SILK 
is indeed usable for quickly generating several interface designs in these early stages. 
Several of the designers were even able to use it to create new interactive widgets that 
were not built-in to the system. The testing also illustrates that SILK allows designers 
to effectively communicate design ideas to engineers. In fact, the designers and engi- 
neers were able to discuss the designs and make changes to them while the engineers 
were present. The evaluation also shows that designers are excited by the prospects of 
using electronic storyboarding instead of programming languages for illustrating inter- 
active behaviors. Finally, SILK demonstrates a domain where sketching is appropriate 
as the primary interface to a system. 
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9.4      Final Remarks 

This thesis set out to investigate a way of enabling user interface designers to take 
advantage of computer-based sketching tools in the early stages of user interface 
design. The research met its goal. This dissertation discusses interesting solutions to 
many problems. For example, to keep designers and evaluators from focussing on the 
wrong details in the early stages of design, I developed the idea of sketching widgets, 
recognizing their types, and leaving them rough. To address the problem of illustrating 
interactive behavior, SILK introduced electronic storyboards. Finally, to support the 
later stages of design, screen transformations were added. Computer-based sketching 
is a key step to a future in which much of a user interface will be illustrated, created, 
and tested by a user interface designer rather than by programmers writing the code. 
Finally, this work shows the promise of using informal communications techniques, 
such as sketching, in several other domains. 
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APPENDIX A 

Design Survey Materials and Data 

This appendix includes the materials and data used for the design survey described in 
Chapter 2. Section A. 1 contains the original design questionnaire e-mailed to approxi- 
mately 300 subscribers of the visual design mailing list. Section A.2 includes tables 
that summarize the answers of the 31 designers who responded. Note that the answers 
shown for question 3b were derived by performing a simple content analysis on the 
written answers to that question. 

A.l      Questionnaire 

I'm a Ph.D. student at Carnegie Mellon and I am developing a UI design tool. I'd 
appreciate it if any professional designers out there would take 10-15 minutes to 
respond to the following survey concerning your use of interface design tools. 

James Landay 

1. What is your background? 

 graphic design      art      other (please specify) 

2. How many years have you been designing user interfaces?      

3a. When you begin to design an interface, what tools do you use? (check all 
that apply) 

 pencil & paper     whiteboard and markers     software 

3b. Why? What are the strengths and weaknesses at this stage of design? 

147 
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4. Have you ever used interface builders or prototyping tools? Please list which 
ones along with their strengths and weaknesses. 

5. I'm working on an interactive tool that allows designers to quickly sketch an 
interface using an electronic pad and pen. Unlike a paper sketch, this electronic 
"sketch" will respond to user input to allow testing of the interactions, and will 
also support editing of the sketched interfaces. When the designer is satisfied 
with this early prototype, the system will transform the sketch into a more fin- 
ished interface in the specified look-and-feel of a standard graphic user interface, 
such as Motif or the Macintosh. This transformation takes place with the guid- 
ance of the designer. 

a) What do you think would be the strengths and weaknesses of this tool? 

b) Would you be interested in using such a tool? 

6. What kinds of interfaces do you typically sketch? Please estimate what percent 
of your work is in designing interfaces of the following types: 

 Widgets from a toolkit (buttons, scroll bars, etc.) 

 Custom widgets you designed (new kinds of buttons, etc.) 

 Static graphics and decorations (icons, etc.) 

 Interactive graphical objects (rectangles, circles, or icons that can be edited) 

 Multimedia (video, sound, CD-ROM, etc.) 

 Other (please describe) 

7. I'd appreciate it if you could send me copies of actual sketches drawn early in 
the design process for a user interface. We can use these to see what types of 
widgets people sketch and how they draw them. This will allow us to tune our 
system to recognized these widgets. All sketches sent will be kept confidential (if 
you can't send new ones, sketches from older products or designs are also wel- 
come). 
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A.2     Summary of Data 
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All Respondents 

Question Overall Averaqe or %               Visual Average or %       i Non-Visual Average or % 
1. Visual designer? 58%! count = 18: count =13 
2. Years experience 5.8! 6.1 i 5.3 
3a. In early stages of design, t                                                              ; 

sketch? 94% 100%; 85% 
use software? 58% 56%' 62% 

3b. Why sketch? I                                                         ; 
faster? 55% I 50% i 62% 

portable/collaborative? 45% i 33%l 62% 
perspective/organization? 32% 39%' 23% 

easier/versatile? 29% 33% 23% 
details don't get in way? 16%; 22% 8% 
allows non-standard Uls? 6%i 11% 0% 

4. Ul Tools Used: ! 
HyperCard (HC)? 48%; 33% 69% 

Director (D)? 45%! 61% 
33% 

23% 
Visual Basic (VB)? 29% 23% 

HC, D, or VB? 77% 83% 69% 
Ul builder? 48%: 44%i 54% 

5b. Interested in SILK? 90%: 83% 100% 
6. Elements Sketched: : 

Standard widgets 28% 26% 30% 
Custom widgets '17% 20%' 12% 
Static graphics 21%; 25%; 15% 

Interactive objects 7% 4% 12% 
Multimedia 10%' 9% 12% 

Other 17%: 16%: 18% 

Table A-3. Mean values for survey question results. 

The following items were listed for the "Other" category in question 6: window 
layout, interactions spanning multiple widgets, physical product user interfaces, splash 
screen art, static dialogs, animated icons, text layout, and Ul structures / architectures. 
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APPENDIX B 

Evaluation Materials 

The following sections contain all the forms that were given to the participants before, 
during, and after the SELK usability test. See Chapter 6, "Evaluation", for a description 
of the experiment itself. 

B.l      Consent Forms 
This section contains the consent forms given to the designers (Section B.l.l) and 
engineers (Section B.l.2). 

B.l.l      Designer Consent Form 

Carnegie Mellon University 
Consent Form 

Project Title: SILK 
Conducted By: James A. Landay, Computer Science Department 

I agree to participate in the observational research conducted by students or staff under 
the supervision of Dr. Brad Myers. I understand that the proposed research has been re- 
viewed by the University's Institutional Review Board and that to the best of their abil- 
ity they have determined that the observations involve no invasion of my rights of 
privacy, nor do they incorporate any procedure or requirements which may be found 
morally or ethically objectionable. I understand that my participation is voluntary and 
that if at any time I wish to terminate my participation in this study I have the right to 
do so without penalty. I understand that I will be paid $25 for my participation when I 
have completed the experiment. 

153 
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If you have any questions about this study, you should feel free to ask them now or any- 
time throughout the study by contacting: 

Dr. Brad Myers 
HCI Institute, School of Computer Science 
412-268-5150 
bam@cs.cmu.edu 

You may report any objections to the study, either orally or in writing to: 

Susan Burkett 
Associate Provost 
Carnegie Mellon University 
412-268-8746 

Purpose of the Study: I understand that I will be using some interface design tools. I 
know that the researchers are studying how people perform user interface design. I re- 
alize that in the experiment I will create some user interface designs over 2-4 hours. I 
am aware that I will be videotaped during the experiment so that the researchers can 
examine how the interface design tools supported the task. 

I understand that the following procedure will be used to maintain my anonymity in 
analysis and publication/presentation of any results. Each participant will be assigned 
a number. The researchers will save the data and videotape files by participant number, 
not by name. Only members of the research group will view the tapes in detail. No other 
researchers will have access to these tapes. 

I understand that in signing this consent form, I give Dr. Brad Myers, and his associates 
permission to present the results of this work in written/oral form, without further per- 
mission from me. 

Name (please print) Signature 

Telephone Date Subject # 

Optional Permission: I understand that the researchers may want to use a short portion 
of videotape for illustrative reasons in presentations of this work. I give my permission 
to do so provided that my name will not appear. 

 YES  NO        (Please initial here ) 
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B.1.2      Engineer Consent Form 

Carnegie Mellon University 
Consent Form 

Project Title: SILK 
Conducted By: James A. Landay, Computer Science Department 

I agree to participate in the observational research conducted by students or staff under 
the supervision of Dr. Brad Myers. I understand that the proposed research has been re- 
viewed by the University's Institutional Review Board and that to the best of their abil- 
ity they have determined that the observations involve no invasion of my rights of 
privacy, nor do they incorporate any procedure or requirements which may be found 
morally or ethically objectionable. I understand that my participation is voluntary and 
that if at any time I wish to terminate my participation in this study I have the right to 
do so without penalty. I understand that I will be paid $8 for my participation when I 
have completed the experiment. 

If you have any questions about this study, you should feel free to ask them now or any- 
time throughout the study by contacting: 

Dr. Brad Myers 
HCI Institute, School of Computer Science 
412-268-5150 
bam@cs.cmu.edu 

You may report any objections to the study, either orally or in writing to: 

Susan Burkett 
Associate Provost 
Carnegie Mellon University 
412-268-8746 

Purpose of the Study: I understand that I will be using/observing the use of some inter- 
face design tools. I know that the researchers are studying how people perform user in- 
terface design. I realize that in the experiment I will discuss some user interface designs 
over 1-2 hours. I am aware that I will be videotaped during the experiment so that the 
researchers can examine how the interface design tools supported the task. 

I understand that the following procedure will be used to maintain my anonymity in 
analysis and publication/presentation of any results. Each participant will be assigned 
a number. The researchers will save the data and videotape files by participant number, 
not by name. Only members of the research group will view the tapes in detail. No other 
researchers will have access to these tapes. 

I understand that in signing this consent form, I give Dr. Brad Myers, and his associates 
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permission to present the results of this work in written/oral form, without further per- 
mission from me. 

Name (please print) Signature 

Telephone Date Subject # 

Optional Permission: I understand that the researchers may want to use a short portion 
of videotape for illustrative reasons in presentations of this work. I give my permission 
to do so provided that my name will not appear. 

  YES  NO        (Please initial here ) 
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B.2      Initial Information Read to Participants 

Initial Information Read to Participants 

The basic instructions below are based on a instructions written by Kathleen Gomoll 
[Gomoll 1990]. 

Description of the observation (in general terms): 

• You are helping me by trying out a user interface design system. 

• I'm testing the system; I'm not testing you. 

• I'm looking for places where the system may be difficult to use. 

• If you have trouble with some of the tasks, it's the system's fault, not yours. Do not 
feel bad; that's exactly what I'm looking for. 

• If I can locate trouble spots, then the developers can go back and improve the system. 

• Remember, this is totally voluntary. Although I don't know of any reason for this to 
happen, if you become uncomfortable or find this objectionable in any way, feel free to 
quit at any time. 

Demonstration of equipment: 

• You will be using this workstation/PC to work on a user interface design. Are you fa- 
miliar with how to use this equipment? The mouse? The keyboard? 

• Please do not move or resize the windows. They are positioned to be seen by the video 
camera. 
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B.3     Designer Demographic Data Sheet 

Designer Demographic Questions 

Subject No.:  

Age:   

Sex: 
 Male 

 Female 

Occupation: 
 Student    (Major:     

. Professional Designer 

Other (please specify) 

How many years experience have you had in doing user interface design in a profes- 
sional capacity (i.e., you were paid for it)? 

Have you taken a course in user interface design in which you spent a significant 
amount of time producing actual interface designs? 

If yes, which courses were these? 

Which user interface design tools have you used (e.g., HyperCard, Director, Visual BA- 
SIC, Antisexist, Toolbook, etc.)? 

Which drawing or painting programs have you used? (e.g., MacDraw, Corel Draw, 
etc.)? 

Which HCI books have you read? 

Have you read Usability Engineering by Jakob Nielsen? 
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B.4     Engineer Demographic Data Sheet 

Engineer Demographic Questions 

Subject No.:  

Age:   

Sex: 
 Male 

 Female 

Occupation: 
 Student    (Major:    ) 

Other (please specify) 

How many years experience have you had programming in a professional capacity (i.e., 
you were paid for it)? 

Have you taken a course in user interface design in which you spent a significant 
amount of time producing actual interface designs? 

If yes, which courses were these? 

Which user interface design tools have you used (e.g., HyperCard, Director, Visual BA- 
SIC, NeXTStep, Toolbook, etc.)? 

Which drawing or painting programs have you used? (e.g., MacDraw, Corel Draw, 
etc.)? 

Which HCI books have you read? 

Have you read Usability Engineering by Jakob Nielsen? 
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B.5      SILK Demonstration Script 
Before giving the participants the SILK Tutorial, I read the following information to 
them while performing the actions indicated in italics. 

SILK Demo Script 

Overview 

The idea of the system is that the designer sketches a user interface using the mouse and 
then leaves it in that sketchy state. The system tries to infer what the different types of 
user interface elements are in the sketch and they become active. The designer can then 
attach actions to them using story boards. 

Basic Primitives 

There four are basic primitives that are recognized. For example, rectangles. 
draw rectangle and show feedback 

You can only draw that with a single stroke (meaning you hold down the left mouse 
button throughout the shape.) So you can not draw the rectangle with 4 lines. 

It also recognizes circles, lines, and text. 
draw circle 
draw line 
draw squiggly for text 

Corrections/Learning 

At any point the system may get one of these primitives wrong. For example you may 
draw a small circle and the system may have inferred it was a rectangle. 

draw a small circle 
click on button to correct 

The system will learn from these corrections and learn how you draw your shapes. 
When the system makes a mistake you should correct it instead of deleting it and start- 
ing over. 

Gestures 

The system supports gestures that are drawn with the MIDDLE button held down. For 
example, you can draw an X-shape with a single stroke through objects to delete them. 

draw a delete gesture to delete some items 

Widgets 

The system takes the basic primitives we previously drew and combines them together 
to get user interface widgets. For example if you draw a small circle with some text to 
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the right of it, the system says it is a radio button. 
draw a radio button 

Another alternative inference for that is a check-box since a check-box is defined as a 
square with some text next to it. Since these two widgets are similar, the system reports 
both inferences. 

draw a check-box 
click on the radio button and click new guess 

If you meant check box, we can click on new guess and we will get check-box. You can 
see it also gives the other alternative inferences: radio button or multiple selected ob- 
jects. You can change the inference by selecting on one of those alternatives. 

Selection 
You can move or resize any of the selected objects by dragging on the handles. The 
white handles are for moving and the black handles are for resizing. 

demonstrate moving and resizing 

You can select multiple objects at once by clicking on the object and then while holding 
down the shift key clicking on a second (or more) object. 

demonstrate multiple selections 
Sometimes you can use these selections to give SILK a hint as to what primitives it 
should group together in a new widget. 

draw radio button with text too far from label 
multi-select 
new-guess button 

If you don't wish to give SILK that hint, you might just move the items closer together. 
draw radio button with text too far from label 
move label closer 
new-guess button (with only one item selected) 

Decorations 

Sometimes it is important to draw static graphics that you do not want to be recognized 
as a UI widget. You can do this by switching to decorate mode. 

switch to decorate mode and draw some things 
All editing (e.g., to delete it) of these graphics needs to occur in decorate mode, but oth- 
erwise you can use them anywhere. 

Storyboarding 

What you can then do is attach actions to the widgets. For example, we can have a win- 
dow with some buttons below it. 

draw a window 
draw 2 buttons below it 
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Now you can copy these screens to the storyboard window by selecting "Copy Screen 
to Storyboard". 

copy screen to storyboard 

Now we can change the original. 
draw a 1 in the window 
copy screen to the storyboard 
use backspace to delete the 1 and draw a 2 
copy screen to the storyboard 

We now have these screens and we would like to tell the system what actions cause 
screen transitions. So we draw arrows between objects and screens. 

draw an arrow from 1st button to screen 1 
draw an arrow from 2nd button to screen 2 
draw arrows from all other buttons back to 1st screen 

We then select the first screen and copy it back to the sketch window. We now switch 
to run mode. 

copy 1st screen to sketch 
switch to run mode 
demonstrate running storyboards 
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B.6     Practice Design Task 

The following practice task was given to the design participants on a paper sheet along 
with the SILK Tutorial and Reference (see Appendix D). 

Designer Practice Task 

Design an interface that would allow potential home buyers to view houses on the mar- 
ket through their home computer. The service should allow the user to specify various 
search criteria such as price and location, after which the system would show a series 
of photos for each of the available houses and allow the customer to set up an appoint- 
ment to see a house for real. 

You can assume that the computer has some type of network connection and your in- 
terface does not need to deal with making the connection with the remote home market 
data. 

This document will lead you through building two radically different, but high quality 
versions of this interface. You should follow the steps in the document and try to build 
the two interfaces in order to become familiar with the tools for the next design task. *&* 

Sometimes the system will make a mistake. That is, the system did not do what you ex- 
pected it to. Please inform us when this happens so that we can take note of it. 
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B.7     Measured Design Task 
The following task was given to the design participants on a paper sheet. They were 
permitted to keep their copy of the SILK Tutorial and Reference (see Appendix D). 

Designer Task 1 

Design multiple interfaces for a system to provide weather information to travelers. 
TRAVELweather can provide information about the weather for the current day and can 
give predictions for the next two days. The interface is to be used on a window-based 
graphical personal computer with a mouse. 

The user should be able to enter the date and time they wish a forecast for. The system 
should display a map of the region in question with the weather data overlaid on the 
map. The types of data that the system should be able to display are temperature (in ei- 
ther Fahrenheit or Celsius), precipitation, and wind speed/direction. 

You should try to come up with as many radically different design ideas as you can. 
Your goal for this task is to explore the possible design space and eventually present 
several good alternatives to the rest of your design team or a client. You should save or 
label the different designs that you come up with so that we can keep them separate 
from each other. Remember, the designer who produces the best interface (as chosen 
by our panel of judges) will win $100. 

Sometimes the system will make a mistake. That is, the system did not do what you ex- 
pected it to. Please inform us when this happens so that we can take note of it. 
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B.8      Engineering Task Description 

The following task description was given to the engineering participants on a paper 
sheet. 

Engineer Task 

You will be shown some preliminary designs for a user interface to a weather informa- 
tion system. The person showing you the designs is a user interface designer and has 
just spent the last few hours working on these early designs. You are to pretend that you 
are a member of the engineering team that will build the ensuing product. Try to give 
the designer feedback on the designs as you might in a real work situation. You should 
be concerned with the appropriateness of the user interface design (i.e., how well it will 
work for the users), not with how hard it will be to implement. 

The description of the problem given to the designer is as follows: 
Design multiple interfaces for a system to provide weather information to trav- 
elers. TRAVELweather can provide information about the weather for the cur- 
rent day and can give predictions for the next two days. The interface is to be 
used on a window-based graphical personal computer with a mouse. 

The user should be able to enter the date and time they wish a forecast for. The 
system should display a map of the region in question with the weather data 
overlaid on the map. The types of data that the system should be able to display 
are temperature (in either Fahrenheit or Celsius), precipitation, and wind speed/ 
direction. 

B.9      Engineering Design Review Script 
The following description of the design review was read by me to both the engineer 
and designer at the start of the engineering design review. 

Design Review Script 

[Designer name] is going to show you what he/she has done and try to run you through 
it. [Engineer name] is acting as an engineer that you as a designer are trying to 
show the design idea to. He/she knows what the design problem is from reading the 
problem statement. He/she might have feedback on what you did and you are 
free to try these changes. You are trying to show what you have done and walk 
him/her through your ideas. When you feel that you have fully gone over 
it, tell me that you are ready to end. 
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B.10    Designer Post-Evaluation Questionnaire 
Answers to the following questions are given in Appendix Section C.5. 

Designer Post-Evaluation Questionnaire 

Subject number:    

1. Assuming that the SILK system was significantly faster and less buggy than the pro- 
totype, do you think it would be a better tool for interface design than existing tools (i.e., 
paper and prototyping tools such as HyperCard, Director, and Visual BASIC)? 

Why or why not? 

Usability Problems 

Did you experience problems with any of the following: 

2. Understanding how to carry out the tasks (check one): 

 no problems       minor problems major problems 

Please explain: 

3. Knowing what to do next to complete your task (check one): 

 no problems       minor problems major problems 

Please explain: 

4. How well did the gesture recognition work? 

5. What are the best aspects of SILK for the user? 

6. What are the worst aspects of SELK for the user? 

7. What were the most common mistakes the system made? 

8. How was the overall performance of the system? (circle one) 
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very poor  0123456789    10 very good 

9. What does a system like SILK offer you that Director or HyperCard does not? 

Please write any other recommendations and comments you might have on SILK here 
and on the back: 
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B.ll    Engineer Post-Evaluation Questionnaire 

Engineer Post-Evaluation Questionnaire 

Subject number:    

1. Assuming that the SILK system was significantly faster and less buggy than the pro- 
totype, do you think it would be a better tool for interface design than existing tools (i.e., 
paper and prototyping tools such as HyperCard, Director, and Visual BASIC)? 

Why or why not? 

Usability Problems 

Did you notice the designer having problems with any of the following: 

2. Understanding how to carry out the tasks (check one): 

 no problems       minor problems major problems 

Please explain: 

3. Knowing what to do next to complete their task (check one): 

 no problems       minor problems major problems 

Please explain: 

4. What are the best aspects of SILK for the user? 

5. What are the worst aspects of SILK for the user? 

6. What were the most common mistakes the system made? 

Please write any other recommendations and comments you might have on SILK here 
and on the back: 
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B.12    Post-Experiment Information 

The following information was given to each participants on a sheet of paper at the end 
of the session. 

Post-Experiment Information 

Thank you for participating in our experiment. The purpose of the experiment was to 
see whether user interface designers can use a new electronic sketching tool, called 
SILK, to design user interfaces. In addition, we would like to see if user's can perform 
design tasks more quickly with SILK than with existing design tools (such as Hyper- 
Card), for both the overall process and for each iteration. We would also like to find out 
whether SILK encourages the exploration of a wider variety of design ideas. We would 
also like to find out whether designers using SILK produce higher quality user interfac- 
es. Finally, we would like to find any problems with the SILK user interface so that we 
can refine it. 
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APPENDIX C 

Evaluation Data 

This appendix contains all of the data collected during the SILK usability test. See 
Chapter 6, "Evaluation", for a description of the experiment and an analysis of the 
data. 
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C.l     Designer Demographic Information 

Table C-l contains the demographic information that was given by the design partici- 
pants prior to the experiment. 

Designer Demographics 

participant 7       ! 9 11         I 13       i   15 I 17 mean' median       % yes 

age 21! 29 41! 33!    21! 33 29.7!       31.0: 
sex Male: Female! Female! Female! Male! Male !              I    50% male 

graduate program? no! yes! yes! yes'    no! N/A !               i            60% 

major 
industrial' 

design! 

HCI-i 
interaction 

design! 

communication,! 
planning, &! 

design: 

HCI -! 
interaction! 

design!    HCI! design 
i 
! 

years professional Ul 
design experience 

I 

0.25: 1.25! 0! 2!   2.5i 5 1.8          1.6 
advanced? no yes no! yes    yes yes i                !             67% 

taken Ul design project: 
courses? yes yes- yes! yes    yes no !            83% 

Ul tools used: 
HyperCard? no no no no    yes yes 33% 

Director? ^es 
yes 
no! 

 yes 
no 
no; 

yes yes,   yes yes 100% 
Visual BASIC? no 

no 
no:   yes no 33% 

HTML? no    yes! yes 33% 
C++ or Java? no: no- no yes!   yes no 33% 

Drawing/painting 
programs used: 

no no no Canvas no no    yes 17% 
Color It! 

Corel Draw 
no no no no.   yes no 17% 
no no yes no:    no yes 33% 

Freehand no no no yes:   yes: yes :            50% 
Illustrator no yes! yes yes    yes yes 83% 
MacDraw no no no no    yes yes 33% 
MacPaint no no. no' no:   yes no 17% 

Photoshop yes yes 
no 

yes yes    yes yes 100% 
Superpaint no no no    yes no 17% 

at least one? yes yes yes: yes    yes yes :                              100% 
read HCI books? yes yes no yes    yes yes '•                              83% 

Nielsen's Usability 
Engineering ? no: yes 

j 
no' no;    no yes 33% 

Table C-l. Complete demographic information supplied by design participants. 
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C.2     Engineer Demographic Information 

Table C-2 contains the demographic information that was given by the engineering 
participants prior to the experiment. 

Engineer Demographics 

participant 8 10 12 14 16 18 mean median % ves 

age 26 33 25 27 25 25 26.8 25.5 
sex Male Female Male Male Male Male 83% male 

graduate program? yes yes yes yes yes yes 100% 

major CS robotics 
language 

technology CS CS CS 67% CS 

years professional 
programming 
experience 4 9 0 2 2 7 4.0 3.0 

Ul toots used: 
HyperCard? yes no no no no no 17% 

Director? no no no no no no 0% 
Visual BASIC? yes no yes no no no 33% 

Tcl/Tk? yes yes no no no no 33% 
Other? yes yes no no no no 33% 

at least one? yes yes yes no no no 50% 
Other: 

Builder? yes no no no no no 17% 
Lotus Notes? yes no no no no no 17% 

X/Motif? yes no no no no no 17% 
Xcessory? yes no no no no no 17% 

Drawing/painting 
programs used: 

Canvas no no no no no no 0% 
Color It! no no no no no no 0% 

Corel Draw no no yes no no yes 33% 
Cricket Draw yes no no no no no 17% 

Freehand no no no no no no 0% 
Illustrator yes no no no no no 17% 
MacDraw yes yes no no no yes 50% 
MacPaint no yes no no no no 17% 

Paintbrush no no no yes no no 17% 
Photoshop yes no no no no no 17% 

PowerPoint yes no no no no no 17% 
Superpaint no no no no no no 0% 

Visio yes no no no no no 17% 
Xfig no yes no yes yes no 50% 

at least one? yes yes ves yes yes ves 100% 
read HCI books? yes no no no no no 17% 

Nielsen's Usability 
Enq'meerinq ? yes no no no no no 17% 

Table C-2. Complete demographic information supplied by engineering participants. 
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C.3     Experimental Data 

This section includes the data collected during the SILK usability test. Table C-3 con- 
tains data on the recognition results and Table C-4 contains data that characterizes the 
sessions and the resulting designs (each of which are included in Section C.4). 

Recognition Information 

1                                    participant 7 9 !     11 13 |      15 !    17 mean median i   stdev 

tutorial   |     editing !                #drawn 52^ 40 !         78 56 81 !       55 60 56 !           16 

j    gestures |          #unrecognized 10^ 9 2 10 30 I        5 11 |            10 10 

i recognition rate 80.8% I 77.5% 97.4% j     82.1% j     63.0% j     90.9% 82.0% 81.5% !     11.8% 

[    primitive !               «drawn 88! 103 174 i           54 83 i           96 100 !           92 40 

j components ]          «unrecognized 12: 15 55 4 i           10 I            15 19 I           14 I            18 

#corrections ii: 21 27 1 i              8 6 12 10 !      1° 1 
recognition rate 87.5% 79.6% i 84.5% :   98.1% i     90.4% !     93.8% 89.0% '<     88.9% 6.6% 

widget #made 49 24 40 15 !            25 30 31 !           28 12 

inferences «errors 9 

81.6% 

5 

79.2% 

22 2 9 1               7 9 8 7 

recognition rate 45.0% 86.7% 64.0% 76.7% 72.2% 77.9% 15.3% 

repairs: #new guesses 44 9 3 2 1 5 11 4 17 

«changes 1 0 5 1 1 5 2 1 2 

«broken N/A 

5.0 

N/A 19 1 8 6 9 7 8 

repairs/error 1.8 1.2 2.0 1.1 2.3 2.2 1.9 1.4 

«explicit inferences N/A N/A 27 2 14 10 13 12 10 

«explicit successes N/A N/A 12 1 9 3 6 6 5 

explicit success rate N/A N/A 44% 50% 64% 30% 47% 47% 14% 

weather ;      editing «drawn 67 139 63 119 151 78 103 99 38 

task           gestures «unrecognized 3 17 8 8 34 

77.5% 

7 13 8 1 1 

recognition rate 95.5% 87.8% 87.3% 93.3% 91.0% 88.7% 89.4% 6.3% 

primitive «drawn 120 102 40 55 123 114 92 108 36 

I components «unrecognized 21 20 20 12 13 38 21 20 9 

#corrections 9 8 

92.2% 

3 

92.5% 

0 15 7 7 7 5 

recognition rate 92.5%! 100.0% 87.8% 93.9% 93.1% 92.5% 3.9% 

#non-learning errors N/A 33 16 0 48 32 26 32 18 

i non-learning recognition 
rate N/A     : 67.6% 60.0% 100.0% 61.0% 71.9% 72.1% 67.6% 16.3% 

widget «made 4ll 17 2 14 56 14 24 16 20 

'   inferences «errors 10i 1 1 5 26 3 8 4 10 

recognition rate 75.6%: 94.1% 50.0% 64.3% 53.6% 78.6% 69.4% 69.9% 16.7% 

repairs: «new guesses 8 0 0 0 23 0 5 0 9 

«changes o! 0 0 0 13 0 2 0 5 

«broken 3| 1 1 5 29 3 7 3 11 
repairs/error 1.li 1.0 1.0 1.0 2.5 1.0 1.3 1.0 0.6 

| «explicit inferences 111 1 0 4 17 0 6 3 7 

i «explicit successes Zi 1 0 1 11 0 3 1 4 
i explicit success rate 18%; 100% 25% 65% 52% 45% 38% 

Table C-3. Recognition information for editing gestures, primitive components, and widget 
inferences for both the tutorial and measured task. 
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Tutorial, Task, Design, and Discussion Characteristics 

|                  participant 7         9    I   1 1   !   13 I   15  I   17 mean j median j stdev 
! 
j                  total time 3:30 3:55 4:15 3:00 4:1014:30 3:53 4:02 0:33 

tutorial !                       time 0:44 0:42  1:39 0:30 0:45! 1:18 0:56 i       0:44j 0:26 

|                   »crashes 0        0        0J       0!       0;       2 0.3 I         0.0! 0.8 

j    crash recovery or assistance 
|                       time 0:00 0:00 

]         j 

0:05 0:00 0:00 0:06 0:01 

0:54 

; 
0:00 0:02 

adjusted tutorial time 0:44| 0:42 1:34 0:30! 0:45  1:12 0:44 0:23 

weather time 2:07j2:08i 1:18! 1:13J 1:47| 1:43 1:42 1:45 0:23 
task «crashes 2!       0|       0|       0        3        1 1.0 !      o.s! 1.3 

!           crash recovery time 0:25! 0:00l 0:00; 0:001 0:10 0:04 0:06 

1:36 

0:02! 0:09 
adjusted task time 1:42! 2:08  1:18i 1:13; 1:37  1:39 1:38! 0:19 

iteration 1 time 1:32! 0:47^ 1:18! 0:26: 0:46! 1:19 1:01 I       1:02: 0:25 
»screens 5-       7:       2i       4         8!       7 5.5 6.01 2.3 

«transitions 10,     18:        0:        8!     30:     13 13.2 11.5! 10.2 
iteration 2 time 0:38: 1:211          : 0:48  0:40  0:23 0:46 0:40 0:21 

«screens 4      10:                10        6'       2 6.4 6.0 3.6 
«transitions 10!     20:          ;     22      32        2 17.2 20.0' 11.5 

iteration 3 time 10:21 0:21 0:21 
«screens 7 7.0 7.0 

«transitions 19 19.0 19.0: 
«desiqns 2         2         1         2         3         2 2.0 

0:51 

2.0 0.6 

average time / iteration 0:51: 1:04   1:18  0:36  0:32  0:49 0:50: 0:17 
total screens 9:     17         2:     14:     21:        9 12.0 11.5 6.8 

total transitions 20;     38        0l     30;     81.     15 30.7 
5.6 

13.1 

2.0 

25.0, 27.9 
screens / design 4.5     8.5         2:        7         7     4.5 5.8 2.4 

transitions / design .10      19_ 

2.2     2.2 

0:     15      27     7.5 12.5 

2.2 

9.4 

1.2 transitions / screen 0     2.1     3.9      1.7 

total strings 1 18:  220      251   1451 238    157 151 151 77 

sketchy strings 56:     69        8:       0      45:     73 42 

29% 

51 31 
% sketchy strings 47%   31%: 32%     0%• 19%! 46% 32% 18% 

discussion time 0:31; 0:13: 0:23: 0:161 0:28; 0:29 0:23 
67% 

0:25l 0:07 
: engineer asked critical questions? yes:   yes      no   N/A    yes    yes 
I asked questions on structure & 
! behavior? yes    yes!   yes;  N/Ai   ves:   ves 

;               ! 
83%; 

: made real-time chanqes? yesi     no;     nol     no    yes;   yes 50%:          j 
storyboard used to test? yes!   yesl     noi   ves!   ves!   ves 83% I                ! 
storyboard used to illustrate 
structure? 

i         ; 
yes!     no!   yes N/A no yes 50% I 

i         i I 

successful communication? ves 1   ves 1     no N/A ves ves 67% I 

Table C-4. Tutorial, task, and discussion times along with characteristics of designs produced 
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C.4     Designs Produced 
This section contains the storyboards and representative screens of each of the designs 
produced during the SILK usability test. 

.— i;5ILKS10fyb<wrd^ 

Mit S)»teh 

TRAVELweather 
Go back ) 

Changing Your Location: 

-c 
Zoom To:   TPA,   USA   I 

"1 

_;■:—-?•"--—~p 

Ä^-r*""- 
'Ni:'W:!,. 

trr ", 1 > \ 

Figure C-l. First design of participant 7. 
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SILK Storytwd üJU 
:xdie Skttch 

TRAVELweather 5Day Forcast 

Settings ^ ^Daily weather | i^ QUIT !£j    C^QUI 

Figure C-2. Second design of participant 7. 



178 

.:-: SILK Storyboird f 

Mit; ■ «torch/; 

TRAVELw*aCh«rS*pcaobar «h   1»! 

Currant Conditions: 

S32SS 
!-!j: 

TRAVELweather cs back 1 
Daily weather 

Today's Weather  /WA^_n 

f ^ghow forcast J\      Tomorrow > 

Figure C-3. Third design of participant 7. This design, a modification of participant 7's first 
design, was made during the engineering discussion. 
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File. 

TRAVELweather 

^j Sept 17 

\J Sept 18 Forecast 

V-JSept 19 Forecast 
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Figure C-4. First design of participant 9. 
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Figure C-5. Second design of participant 9. 



C.4. DESIGNS PRODUCED 181 

 ■_ 

SILK Storyboard ""•   1 ;]JJ 
Edit  Sketch; 

■: Xin Line 

iweather information 

Today's date ifSeptember 20,   1996 

Information abouj^i, 
ienter date 

The Forecast  for: 

SeptemBi-r,20,   1996 

Temperature   3 8   r 
167 i 

Precipitation 2#4 chance of rain 

Viink   'Is mph 

|   |NE 

•_!' • ■■—-■-  - SILK Sketch 
._.__ rvpi 

The  Forecast   for: 

September  20,   1996 

Temperature: 3 8   ._..- ---**#*"* 

1; 

""'""•'■-, Precipitation 

Wind 

2 0%  chance  of  rain 

25 mph        a*-**** 

1 
\ ,>'^"      -\- 

(NE             
a'w^ 

1 
I 

■£• back 
i ■^/"^WW^           I 

1 
8 — 
1 

 ■ 

«mü^ilüi^mii"'5"'      ^ ^ 

Figure C-6. Sole design of participant 11. 
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Figure C-7. First design of participant 13. 
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Figure C-8. Second design of participant 13. This was judged to be the best design produced. 
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Figure C-9. First design of participant 15. 
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Figure C-10. Second design of participant 15. 
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Figure C-ll. Third design of participant 15. 
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m '■il-8 IQtttna« 12:1 S:HV- 

Figure C-12. Fourth design of participant 15. This design, a modification of participant 15's first 
design, was made during the engineering discussion. The only difference is that the state of Texas 
in the first screen (upper left) can be selected by clicking anywhere in the state rather than on a 

button contained in the state. 
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Figure C-13. First design of participant 17. 
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Figure C-14. Second design of participant 17. 



190 

_l. 
— - - SILK Sketch "' -- • I.-IJI 

1 

TRAVEL Weather Pittsburgh   Quay 1 

QjDay 2 

"OMorning § 

"O-E. Afternoon | 

1 0 Temp. F 

Temp. C 

Quay 3 vJLV. Afternoon 1 

\J Evening     f 

o 
0 

Precip. 

Wind 

)   l 

/ 

:■;. 

( Return o CT1 Pittsburgh 

■Si 

Figure C-15. Third design of participant 17. This design, a modification of participant 17's 
second design, was made during the engineering discussion. The designer added two panels of 

buttons in the upper right corner. 
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C.5     Post-Evaluation Questionnaire Results 

This section contains all of the participant's responses to the questionnaire adminis- 
tered after the usability test (see Chapter 6, "Evaluation"). For fixed response ques- 
tions, the number of users who selected a particular response are reported. In addition, 
the mean and median are also reported for numerical questions. For discussion ques- 
tions, all of the answers are shown. All answers are proceeded by the participant's 
identification number. 

Designer Post-Evaluation Questionnaire 

1. Assuming that the SILK system was significantly faster and less buggy than the pro- 
totype, do you think it would be a better tool for interface design than existing tools (i.e., 
paper and prototyping tools such as HyperCard, Director, and Visual BASIC)? 

» (7) "It could be an excellent 1st draft tool." 

» (9) "Better than Director - the linking with drawings rather than 
Lingo is excellent. Also, you can see right away what is going on." 

» (11) "No." 

» (13) "No, but it would be good for novice interface designers." 

» (15) "Yes and no." 

» (17) "May be useful for quickly structuring information." 

Why or why not? 

» (7) "It is as quick as paper sketching and provides a basis for 
interaction." 

» (9) "I still would have liked using pencil and paper for fiddling 
with the problem - it was still faster by hand. But I could learn 
using the tool - I made some frames, and saw missing pieces as I was 
working, which is the same way it works using paper. That's good!" 

» (11) "It takes too much time and it's very frustrating." 

» (13) "Unable to implement rollovers, visual/perceptual cues, tran- 
sitions from one screen to another." 

» (15) "The ability to prototype screen-based interactions is GREAT! 
However, it seems difficult to do anything non-standard (e.g., radio 
buttons that change the screen)." 

» (17) "But restricts typical visual design decisions frequently 
combined with prototyping (like type and color)." 
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Usability Problems 

Did you experience problems with any of the following: 

2. Understanding how to carry out the tasks (check one): 

{7.9. 13} ->3   no problems   {11. 15. 17} -> 3 minor problems  0   major problems 

Please explain: 

» (7) no comments 

» (9) "For basic tasks, the tutorial was good enough to understand. 
I did have some questions as I went along about features - and got 
stuck a few times which may have been bug related - e.g., link from 
button didn't work when text was too big." 

» (11) "It was just a matter of readjusting my thinking - learning 
something new." 

» (13) no comments 

» (15) "I didn't realize that uninterpreted regions could be links 
between screens." 

» (17) "Relationship of copy and paste on control window ambiguous. 
Instruction seems too long (text) and also prevents recovery from 
error problems." 

3. Knowing what to do next to complete your task (check one): 

(9. 13) -> 2 no problems   {7. 11. 15. 171-> 4  minor problems 0   major problems 

Please explain: 

»   (7)   "The UI  of  the  tool  itself." 

» (9) "The tasks were fairly simple. The only problem might be re- 
arranging - I wasn't sure how to do this without being able to drag." 

» (11) "Same as above." 

» (13) "Tools are few and simple - it's easy to remember all possible 
combinations of things." 

» (15) "Linking in scrollbars to make them do something." 

» (17) "Annotate mode. And widget choices were not well known enough 
for me to rely on them." 
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4. How well did the gesture recognition work? 

» (7) "Well except that direction was too important." 

» (9) "X's could be better. Caret worked very well." 

» (11) "Just OK." 

» (13) "Works well - and I am left handed. Preferred using backspace 
for delete, however." 

» (15) "Pretty well. It's annoying that it quits if you go off the 
screen. Using the mouse with my left hand was probably responsible 
for a lot of problems." 

» (17) "I decided not to use it." 

5. What are the best aspects of SILK for the user? 

» (7) "Ability of SILK to understand widget types." 

» (9) "The storyboard was nice - being able to draw arrows to in- 
dicate links was very fast. I liked the way it learned gestures, and 
the way it remains sketchy. I liked the ease with which you could 
test the interaction - it's a very tight loop. Also, the storyboard- 
ing/sketching cycles were much better than with Director. It would 
be even better with drag & drop." 

» (11) "The idea of frame to frame." 

» (13) "Works like pencil and paper; is simple, shows logic of nav- 
igation." 

» (15) "The ability to see and edit the storyboard is great. It'd 
be nice if I could automatically straighten arrows." 

» (17) "View of information the users need can be explored quickly!" 

6. What are the worst aspects of SILK for the user? 

» (7) "It won't understand non-standard widgets." 

» (9) "I got a little confused with mouse buttons and not being able 
to drag an object except by its handles. This might get better with 
time." 

» (11) "(1) Speed. (2) Lack of choices. (3) No actual shapes - spent 
a lot of time trying to get the program to recognize commands. (4) 
lack of manual control. (5) odd type input. (6) odd shapes." 

» (13) "Display is pixelated, hard to layer drawing objects, and 
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type abilities are primitive. I would implement size, bold, ital- 
ics . " 

» (15) "Fiddling with the recognizer. Towards the end, I just wanted 
to grab widgets from a palette. Clicking on the wrong mouse button 
when gesturing is annoying." 

» (17) "Visual restrictions in design phase make it difficult to 
integrate static choices with specification." 

7. What were the most common mistakes the system made? 

» (7) "Drawing objects without figuring out what they are (buttons, 
text, etc.) . " 

» (9) "Not recognizing X's. Sometimes, such as with scrollbar, it 
didn't come up with any recommended widget and I couldn't force it 
to be any of them." 

» (11) "Recognizing some shapes." 

» (13) "I think some of the storyboard got lost when I deleted a 
screen." 

» (15) "Every time I tried to do an ungroup gesture, it interpreted 
it as delete. Lots of my text scribbles were interpreted as lines." 

» (17) "Primitive recognition." 

8. How was the overall performance of the system? (circle one) 

very poor  01     2     3     4     5678    9    10 very good 

» (7) "6.5", (9) "7", (11) "3", (13) "8", (15) "7", (17) "6.5' 

mean = 6.3 
median = 6.8 
stdev = 1.7 
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9. What does a system like SILK offer you that Director or HyperCard does not? 

» (7) "Rough drafting and simple storyboard interaction." 

# (9) "I liked being able to draw the connections. It was much faster 
than using Lingo in Director. I'm not a HyperCard user. However, I'm 
not sure I would use Director for that level of sketching. . . I would 
more likely use paper, and then Director would be used for a more 
visually rich/accurate interactive prototype. But that sort of func- 
tionality would be nice for Director even in those instances." 

» (11) "The idea of working from frame to frame." 

» (13) "To me, it's like pencil and paper plus navigation logic, so 
it offers simplicity. " 

» (15) "Storyboarding interface is really nice. I'd like to see it 
better integrated with sketching." 

» (17) "A storyboard view that is not only sequential (like movies) . 
Ability to be fast and sloppy." 

Please write any other recommendations and comments you might have on SILK here 
and on the back: 

» (7) "The widget detection and sketching allows for fast low level 
interaction. This tool is great for giving the idea of a progression 
through a program w/o getting into the details of the visual design. 
Often with tools like Director the high level of visual detail mis- 
leads people to thinking more about the visual refinement rather 
than the interaction. 

The UI and interaction of the tool (SILK) itself needs some work. 
The tool is difficult to use at times and its functionality is not 
apparent much of the time." 

» (9) "Sometimes the links got messy (too many) and were hard to 
follow, but I don't know how to fix that. 

Being able to copy from the storyboard would be great; also drag & 
drop between sketch and storyboard and within the storyboard. 

Pen input would also be easier for me to draw shapes with (nothing 
to do with the program, I guess). 

I sometimes wanted different colors in 'decorate' mode - also dif- 
ferent sizes of text. It was hard to get things looking proportional 
- such as how big the map is compared to buttons and text, etc. 

I would have liked an easier way to share objects - sometimes I 
wanted to change all titles, but didn't want to change each frame 
separately. Being able to copy directly from storyboard would help 
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a little. However, I wouldn't want to complicate the interface by- 
having object names and attributes, etc. So, I'm not sure about this 
comment. 

SILK seems most useful as something in between paper sketching/ideas 
and fuller-functioned prototypes, but I am not sure exactly how it 
would fit into the design process without trying it in that scenar- 
io." 

» (11) "I don't .think this works well as a design tool - what does 
it offer that is better than what is out there already? Why not draw 
actual boxes - instead of having to spend time drawing shapes that 
are not easily/quickly recognized by the computer?" 

» (13) "Implement size change for type plus bold and italic. 
Allow irregular shapes to be made into buttons. 
Allow for movable sprites/buttons (I know this is not easy!) 
Allow storyboards to be ported to/edited in Director/HyperCard." 

» (15) "When you're in run mode, you can still delete things from 
the storyboard. This is bad. 

It might be cool if there wasn't a separate sketch window. If you 
could zoom in and out of the storyboard, hide and show arrows, and 
move screens around, you wouldn't need a sketch window. I found mov- 
ing screens between the sketch and storyboarding windows to be very 
confusing. 

Again, the value of sketching widgets seemed less and less to me as 
I had to group and ungroup, change guesses, and so on. I think a 
more direct interface to modifying widgets than HyperCard/VB would 
be really nice, though. 

Add a color palette! 2 colors (black and green) is not enough for 
some prototypes, like a weather map." 

» (17) no comments 
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Engineer Post-Evaluation Questionnaire 

1. Assuming that the SILK system was significantly faster and less buggy than the pro- 
totype, do you think it would be a better tool for interface design than existing tools (i.e., 
paper and prototyping tools such as HyperCard, Director, and Visual BASIC)? 

» (8) "Yes, in some situations." 

» (10) "Yes." 

» (12) "Hard to say." 

» (14) "N/A." 

» (16) "Don't know." 

» (18)   participant did not answer this  question 

Why or why not? 

» (8) "The editing, saving, and manipulation facilities beat pencil 
and paper, but they are slower to use. It seems quicker to use than 
VB or HyperCard, although the finished prototype is also less pol- 
ished. " 

» (10) "It's more obviously a sketch, and sets the "drafting" tone 
more appropriately." 

» (12) "I have no idea about the development of the user interface." 

» (14) "I haven't used comparable systems, and therefore don't have 
points of comparison." 

» (16) no comments 

» (18) no comments 

Usability Problems 
Did you notice the designer having problems with any of the following: 

2. Understanding how to carry out the tasks (check one): 

{8.12. 14} ->3 no problems {10. 16. 18} -> 3 minor problems major problems 

Please explain: 

» (8) "But I had some difficulty figuring out how to understand the 
tasks." 
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» (10) "In trying to bring up a sketch for detailed looking she tried 
to use a sketching gesture!" 

» (12) no comments 

» (14) no comments 

» (16) "Wasn't aware of SILK's capabilities (e.g., clickable image 
map)." 

» (18) "Sometimes took a second attempt to make the right thing hap- 
pen, unsure whether 'copy' had actually been made." 

3. Knowing what to do next to complete their task (check one): 

{8. 10. 12. 14} ->4 no problems (18}-> 1 minor problems major problems 

» (16) participant did not answer this question 

Please explain: 

» (8) "Again, the designer had a better handle on what was going on 
than I did." 

» (10) no comments 

» (12) no comments 

» (14) no comments 

» (16) no comments 

. » (18) "Still unsure of what to do with date/time." 

4. What are the best aspects of SILK for the user? 

» (8) "Flexibility to sketch a wider variety of user interfaces than 
you can make with traditional widget toolkits." 

» (10) "Seemed easy to use and quick to put together a prototype in." 

» (12) "Easy to manipulate. Straightforward display." 

» (14) "Fast, easy modeling of user interface screens. Good modeling 
of relations between various phases in the user dialog." 

» (16) no comments 

» (18) "Quick to make changes and then see how the interface would 
look." 
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5. What are the worst aspects of SILK for the user? 

» (8) "Manipulating the mouse to draw is slow. Its difficult to spec- 
ify subtle UI manipulation issues (i.e., double-click vs. single- 
click) ." 

» (10) "Not sure, but it seemed slightly laborious for her to place 
text on multiple copies of the 'same' screen." 

» (12) "No hints on how to proceed." 

» (14) "From the interaction with the designer, it appeared there 
was not good way of modeling the system's reaction to user input 
errors, also, no provisions for modeling certain types of UI con- 
trols (scroll boxes, etc.)." 

» (16) "Seemed to go through quite a lot of interaction just to 
change a small thing. 

Geared towards discrete modeling. Not easy to see the effects of 
sliding the scrollbar or for the designer to change them." 

» (18) "Occasional pauses were annoying." 

6. What were the most common mistakes the system made? 

» (8) "Crashing. Not properly dealing with links that were modified 
and  changed." 

» (10) "Didn't  notice  any." 

» (12) "No major mistakes, just a bit slow." 

» (14) "No mistakes in this experiment." 

» (16) no comments 

» (18) "Didn't notice any." 

Please write any other recommendations and comments you might have on SILK here 
and on the back: 

» (8) "Drawing with a mouse is difficult. It really needs a pen and 
tablet. 

Although it provides much more free-form design capabilities than a 
drag & drop interface designer like Visual Basic or Builder Xces- 
sory, it's sometimes more of a pain to draw things like buttons than 
it is to drag & drop them from a palette. A hybrid design might be 
useful. 
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The storyboard and links are great." 

» (10) "At one point she said 'I don't really see it flashing [when 
changing from one snapshot of a screen to another] but rather the 
things that change changing by themselves." - It might be good to 
support this." 

» (12) no comments 

» (14) no comments 

» (16) "Built-in graphics/icons would be helpful." 

» (18) "It seemed useful for quickly going through a simple inter- 
face design." 



APPENDIX D 

SILK Tutorial and Reference 

D.l      Introduction 
This document is a tutorial for using the SILK user interface design system. SILK is a 
system in which a designer uses a mouse or electronic pad and pen to sketch user inter- 
face widgets, add behaviors via storyboarding, and test the interfaces out. This docu- 
ment will take the reader through building an example application that illustrates the 
features of SILK. 

D.2      Sketching vs. Gestures 
There are three main ways of interacting with SILK. It is important to get these clear 
before starting. You are able to draw widgets and other UI elements by holding down 
the left button on the mouse and drawing. You can use gestures to perform editing 
commands by holding down the middle button on the mouse and drawing. Finally, all 
editing commands have an equivalent that can be selected from the SILK controls 
window. 

D.3      Basic Components 
The primary method of interaction with SILK is by sketching. SILK tries to recognize 
the basic shapes that the designer sketches with a single stroke of the pen (i.e., not lift- 
ing up the pen or mouse button during the stroke) and then presents the results of its 
guesses with the Primitive Type buttons at the bottom of the SILK controls win- 
dow (see Figure D-l). 

201 
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Figure D-1. SILK Controls window. 

The basic components that SILK recognizes include rectangles, circles, lines, 
and text. If a basic component does not fit into one of those categories, it is labeled as 
unrecognized. The basic components are illustrated in Figure D-2. 

yi 
/W\$N/Wrtj 

Figure D-2. Basic components recognized by SILK: rectangle, circle, line, and text. 

The basic components can be sketched by moving the mouse while holding 
down the left button. Each shape must be drawn with a single stroke, that is, you 
cannot create a rectangle by drawing four lines. The suggested stroke directions are 
given by the arrows in Figure D-2. 

When SILK makes a mistake, you can correct the system by clicking on the 
desired Primitive Type button. It is important to do this because over time the sys- 
tem will get better at recognizing the way you draw the basic components. 

Exercise: Try drawing each of these shapes in the SILK sketch window and see how 
the system reports its guess of the type in the SILK controls window. 
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D.4     Editing Commands and Gestures 
SELK changes the color of the last basic component drawn to purple so that you know 
which object is selected. You can resize and move objects by dragging with the left 
button or middle button on the selection handles (see Figure D-3). The black han- 
dles are used for resizing the object and the white handles are used to move the object. 
Clicking on an object with the left or middle button will also select the object. 
You must click on the outline of the object - not in the center. 

Figure D-3. A selected object with selection handles. 

Exercise: Draw a circle in the SILK sketch window and then use the selection han- 
dles to resize it. Then move the circle. Now select another object that you drew previ- 
ously and do the same. 

To delete an object, first select it and then hit the Back space key. You can also 
use cut, copy, Paste, clear, and undo from the Edit menu. 

SILK also allows the use of gestures for specifying many of the editing opera- 
tions (see Figure D-4). Gestures are created by holding down the middle button and 
making the proper pen stroke. 

^AjVh 

Figure D-4. Editing gestures: clear, group, ungroup, new guess. 
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Exercise: Try grouping a few of the objects you have drawn and then move or resize 
the entire group. Now try deleting the group with the clear gesture. Do not try the "new 
guess" gesture at this time as it is only useful for reguessing the types of entire widgets 
rather than basic components. Note: Holding down the shift key while clicking can 
be used for selecting multiple objects at once. 

Exercise: An easy way to clear the entire sketch is to select clear sketch from the 
Edit menu. Try that now. 

Note: The group and ungroup gestures are not too useful without an electronic 
pen, so you may wish to just use the equivalent menu items for these gestures while 
working with SILK. 

D.5      Combining Basic Components Into 
Widgets 
The basic components are usually combined together in order to sketch user interface 
widgets (e.g., scrollbars, buttons, and windows). For example, specifying a button is as 
easy as sketching a piece of text inside of a rectangle or oval (see Figure D-5) 

Figure D-5. Sketched button is made up of text inside of rectangle / oval. 

Exercise: Sketch a button. 

SILK tries to infer that the two separate basic components (i.e., the text and the 
oval) combine to make-up a button. It informs the user of this by displaying Button in 
the widget Type field of the SILK controls window (see Figure D-l). 

Sometimes SILK may incorrectly infer what the widget type is. For example, 
radio buttons and check boxes look quite similar (see Figure D-6). The only difference 

O \y\AW O \MAA^ 
Figure D-6. Check box and radio button widgets. 
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between the two widgets is that a check box has a small rectangle to the left of some 
text, whereas a radio button has a small circle. If SILK makes the wrong inference, the 
designer can try the next best guess by clicking on the New Guess button in the SILK 

controls window or by drawing the New Guess gesture with the middle mouse button 
held down. Alternatively, the correct inference can be selected by clicking on one of 
the buttons under the widget Type field in the SILK controls window. 

Note: clicking on the New Guess button when there are no further inferences will 
cause SILK to ungroup the objects in question. Selecting one or more of them and then 
clicking on New Guess again will cause the original inference to be chosen again. 

Hint: When objects do not group together the way you would expect, try moving 
them closer together and clicking on the New Guess button. 

Exercise: Sketch a radio button and then see which inference SILK comes up with. 
Click on the New Guess button to see the next best inference. 

Another widget that SILK can recognize is a text field. This is specified by 
sketching some text with a rectangle to the right of it (see Figure D-7). 

^/A/wOf 
Figure D-7. Text field widget. 

Exercise: Sketch a text field. 

D.6     Practice Design Problem 
You will design an interface to a service that will allow potential home buyers to view 
houses on the market using a home computer. The service will allow the user to spec- 
ify various search criteria such as price and location, after which the system will show 
a series of photos for each of the available houses and allow the user to set up an 
appointment to visit the house. 

This document will lead you through building a possible interface to this system. 
You should follow the steps in the document and try to build the interface in order to 
become familiar with SILK. Sometimes the system will make a mistake. That is, the 
system will not do what you expected it to. Please inform us when this happens so that 
we can take note of it. 
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The first step is to sketch the opening search screen that allows the user to spec- 
ify a price range and city in which to search for available houses. The screen should 
have a title, two text fields for the price range, a text field for the location, and two but- 
tons (one for starting the search and one for clearing the form). An example of such an 
interface is shown in Figure D-8. 

Exercise: Duplicate the interface shown in Figure D-8. 

SILK Sketch 

A/AA^   \ ^ 

\\/yv\s\^ 

Figure D-8. Sketched search form. 

D.7      Replacing Text 

Now we will replace the "squiggly" lines representing text with typed text. This is 
done by drawing a small caret gesture while the middle button is held down on top 
of the text (see Figure D-9). Pressing the Return key saves the text. Pressing con- 
troi-g cancels the text. 

Figure D-9. A Caret gesture on top of some text to replace. 
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You can also use the same caret gesture to edit existing typed text. Just draw the 
caret gesture on top of the text to be edited and you will be given a cursor in the text. 

Exercise: Replace the "squiggly" text with real text as we have done in Figure D-10. 
Try editing the text of one of the items after you have already replaced the squiggly text. 

^-E 

il 

SILK Sketch: LJJ 

Search Criteria 

price range 

from: 

Figure D-10. The search form with real text for labels. 

Now is a good time to save your work. You should do that after each major piece 
has been sketched so that it will be easy to recover if the system crashes. To save the 
sketch select save Design... from the File menu of the SILK controls window. 
Type in a filename in the dialog box and click on save. Please use filenames of the 
form: tutoriall, tutoria.12, etc. It would also be a good time to print your work. You can 
do this by selecting Print Design... from the File menu. 
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D.8     Storyboarding 
Now you can copy the screen illustrated in the sketch to the SILK storyboard win- 
dow. You do this by selecting Copy Screen to Storyboard from the Storyboard 
menu of the SILK controls window. You will leave it there for now and come back to 
it later. 

Now you will type in some sample values in the text fields of the search form. In 
order to do this just use the caret gesture on top of the text field boxes as you did ear- 
lier for replacing "squiggly" lines. 

Exercise: Fill in the text fields as in Figure D-ll. 

as£ 

i SILK Sketch 5 - ! Jli 

Search Criteria 

price range 

from: 
100, 000 \ t0:   [150, 000  J} 

city: 

search 

Figure D-ll. The search form with values for the text fields. 

Now you can copy this new version of the sketch to the SILK storyboard win- 
dow. You do this by selecting copy screen to storyboard. You should now have 
two versions of the search criteria form in the SILK storyboard window. 

SILK storyboards allow you to flip between screens on button clicks. This is 
done by drawing arrows with the left mouse button in the SILK storyboard win- 
dow. We would like to go from the blank Search Criteria screen to the filled-in one 
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when the user clicks on any of the text fields (we will pretend that they typed in the 
text). To do this you draw arrows in the SILK storyboard window using the left but- 
ton from the text fields in the blank form to the filled-in form as in Figure D-12. We 
would also like to go from the filled-in Search Criteria screen to the blank one when 
the user clicks on the Clear button. To do this you draw an arrow from the Clear button 
in the filled-in form to the blank form. 

Drawing arrows means just drawing a line between the two points you wish to 
connect. SILK inserts the arrow anchor and pointer for you. 

Exercise: Draw the arrows as shown in Figure D-12. 

Now is a good time to save and print your work. 

EH3 SILK Storyboard: j^r 
Edit  Sketch 

Search CrjXc-ri-a""" 

price  range 

_±D C=3& 

L 
C        search       ]    f >" 

J   j clear 

Search Criteria 

price  range 
|   " 100.   000    ^ Ll50,   000 I 

bant. a Monica,   CA 

C      search        J   / "' N 

Figure D-12.   Storyboard for filling-in and clearing the Search Criteria form. 

D.9      Run Mode 
SILK's Run mode will let you try this interface out. First you need to get the blank 
Search Criteria form back to the sketch window, as that is the screen to interact with 
first. Select that screen by clicking on it with the middle button. Then select copy 
Screen to Sketch from the Sketch menu in the SILK Storyboard window. 

To switch into Run mode, click on the Run radio button in the SILK controls 
window. Note that the cursor changes to indicate the mode you are in. You can then 
test the interface by clicking on the text fields and the Clear button in the SILK sketch 
window. The screen should make the desired transition. 

Exercise: Copy the proper screen to the SILK sketch window and switch to run mode. 
Test the interface by clicking on the text fields and the Clear button. 
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You can now design the screen that will appear when the user clicks on the 
Search button. The screen will consist of a scrolling window that contains two poten- 
tial houses. The houses are sketched along with some information on the house and 
buttons from each house for making an appointment. In addition, there is a button to 
bring up the Search Criteria form in order to perform a new search. The rough sketch 
is illustrated in Figure D-13. 

Exercise: Make sure to switch back to sketch mode and then duplicate the rough sketch 
from Figure D-13. 

Now is a good time to save and print your work. 

Figure D-13. Rough sketch of houses found from the search. 
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Next, fill in the details on the rough sketch to get something like Figure D-14. 

Exercise: Fill in the details on your rough sketch like in Figure D-14 and copy the 
sketch to the SILK storyboard window. We will come back to it later. 

Now is a good time to save and print your work. 

:J_J_ 

to 

L~J 

335 12th St., Santa Monica 

$122, 000 

make appointment 

PI 

a n □' 

1525 Ocean, Santa Monica 

$148, 000 

make appointment 

fnew  search  J 

Figure D-14. Our houses screen after adding more details. 
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Finally, you need to design a window for scheduling an appointment for houses 
that the user likes. The example shown in Figure D-15 could be used for testing the 
application. 

Exercise: Sketch a rough version of the appointment screen and then fill in the details. 
When you are finished, copy it to the SILK storyboard window. 

Now is a good time to save and print your work. 

! -• i SILK Sketch I 1.'.Jli 

Appointment Scheduler 

Address: 

335 12th St. 

Santa Monica, CA 

Wilson, Wilson, &.  Wilson Reality 

Q 

phone 

buy 

John Wilson 

rent 

ll 

e> home o work 

OK 

• Check boxes 

■Radio buttons 

Figure D-15. Appointment scheduling screen. 
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Now you are ready to add the final arrows to finish our application. You need an 
arrow from the Search button of the filled-in Search Criteria form to the houses screen. 
You also need an arrow from the Make Appointment button of the houses screen to the 
appointment scheduling screen. This is illustrated in Figure D-16. Remember, you 
draw the arrows with the left mouse button. 

Exercise: Draw the needed arrows as shown in Figure D-16. 

Now is a good time to save and print your work. 

|SILKStorybo«rdg m 
Bdit  Sketch 

Satrch CriCarl* 

p*ea" I        100.    000~~^ «:     tl5C 

=l=y: ~£Z 

C   ,~k"*\/—<—>. 

Rppoincm«nt   Ech*dul«x 

ddr.ia: I 
115   12th  St. | 
Santa Monica,   CA 

■lilson,   Wilson,   * Wilson R.ality 

phone       C ZJ 

£>   ho«.        O    uork 

Co  

2L 
1J5  13th St..  Santa MOP'- 

A 

ak« appoin t n* ni 

(gr~. ■> / 

Figure D-16. Complete storyboard for our house search application. 

Exercise: Now, the entire application can be tested by copying the blank search screen 
to the SILK sketch window, switching to run mode, and trying it out! 

You should now read the attached SILK Quick Reference Manual to make sure 
you understand the features available to you. 
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D.10    SILK Quick Reference Manual 

This manual gives a complete listing of the different commands and operations sup- 
ported by SILK. 

D.10.1    SILK Modes 

SILK supports the following modes of operation that can be selected from the radio but- 
tons in the SILK controls window: 

•Sketch - all sketched objects are interpreted as possible widgets or other basic 
primitives. 

•Run - allow the user to manipulate the interface widgets. 

•Annotate - all strokes and typed text are annotations for documentation (these 
marks are hidden when in any other mode). 

•Decorate - strokes and text are treated as uninterpreted graphics. 

Note: Strokes can be cut & pasted between the different layers associated with 
each mode. 

D.10.2    Mouse buttons 

middle or left button click select object 

left button draw sketch object 

left button or middle button on selection handles move or resize 

middle button draw editing gesture 

Note: Holding down the shift key while clicking can be used for selecting mul- 
tiple objects at once. 
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D.10.3    Supported Basic Components 

o ->■ /W\^AAA^ 

Figure D-17. Rectangle, circle, line, and text basic components. 

D.10.4    Supported Editing Gestures 

M/vyVA, 

Figure D-18. Clear, group, ungroup, new guess, and text editing gestures. 

D.10.5    Adding Typed Text 

Typed text can be either typed directly on the sketch or can be used to replace the 
"squiggly" lines representing text. Both can be accomplished by drawing the caret 
gesture (see Figure D-19)using the middle mouse button at the desired position of the 
new text. After typing the text, press the Return key to save the text. To cancel the text, 
press Control-g. 

Figure D-19. Caret gesture for inserting typed text. 
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D.10.6    Supported Widgets 

Note: SILK is sensitive to the position and sizes of the primitive components that make 
up the following widgets, so it is wise to sketch them in a similar manner to the exam- 
ples. The arrows are drawn as a guide on where and in what direction to start a basic 
component. The objects do not need to be drawn in that manner, since correcting those 
primitive inferences will cause the system to learn, but SILK will do better if the direc- 
tions and starting positions illustrated below are used. 

Figure D-20. A button. 

CfM/i/^ 
Figure D-21. A check box. 

O^wv 
Figure D-22. A radio button. 

SILK also recognizes vertical and horizontal sequences of buttons, check boxes, and 
radio buttons as panels. 
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Figure D-23. A menu bar. (Note: must be drawn at upper left corner of the SILK sketch window.) 

^/A/W^t 
Figure D-24. A text field. 

n 

Figure D-25. Vertical and horizontal scroll bars. 
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Figure D-26. A scrolling window. (Note: can have any combination of scroll bars at left and below). 

*- 

Figure D-27. A palette. (Note: arbitrary graphics can be drawn in the boxes.) 
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D.10.7    Storyboarding 

We have chosen a simple model for our storyboarding language. Our visual language 
has two types of objects, screens and arrows. Each screen is a sketch of an interface in 
a particular state. Arrows connect objects contained in one screen with a second 
screen. The arrow indicates that when the object in the first screen is manipulated (our 
current model is limited to mouse clicks), the system should display the second screen 
in the sketch window instead of the first. The example shown in Figure D-28 specifies 
that the dialog box should appear when the left button is pressed. 

Figure D-28. Story board that causes the dialog box to appear and disappear. 

The designer constructs storyboards by sketching screens in the SILK sketch 
window. Screens are then copied to the storyboard window using either copy screen 
to Storyboard or Paste Screen to Selected Storyboard Screen from the Sto- 
ryboard menu in the SILK controls window. At this point, the original screen can be 
modified in the sketch window to show how its state might change. After this, the new 
screen is also copied to the storyboard window. Now, the designer can start drawing 
arrows in the storyboard window that indicate screen sequencing or more screens can 
be produced. 

The arrows can be drawn from any widget, graphical object (e.g., decorations), 
or the background to another screen. Thus, the designer can cause transitions to occur 
when the user clicks on any of these items. The arrows show an anchor point on the 
object they were drawn from and an arrowhead on the screen they are drawn to. 

Arrows and screens can be deleted from the storyboard window. Screens can 
also be cut, copied, and pasted. 
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D.10.8    Giving Hints to the Inference Engine 

There are a few ways to help SILK's inference engine be more successful at guessing 
the proper widgets. 

•always correct the system by clicking on the proper Primitive Type button 
when SILK makes a mistake at that level. 

•use multiple-selections (e.g., select multiple pieces of a sketched widget) to 
inform SILK of related items and to ignore internal rules for "nearness" and 
"containment". For example, by selecting a circle and a text object that are far 
from each other, we can still get the system to infer it as a radio button. 

D.10.9    Menu Items 

This section describes all of the commands available from the menus in the SILK con- 
trols window and the SILK storyboard window. 

D.10.9.1    Control Window Menu Items 

File menu: 

New Design - delete current design from both the sketch and storyboard 
windows 

Open Design... - load a saved design from disk 

Save Design... - save a design to disk 

Print Design... - print design to printer named by shell environment variable 
SPRINTER 

Quit - exit SILK 
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Edit menu: 

Undo - undo last cut, copy, paste, or clear 

Cut - delete selected object and move to the copy buffer 

Copy - copy selected object to copy buffer 

Paste - paste object from copy buffer 

Clear - delete selected object 

Clear Sketch - delete all objects in sketch window 

Select All - select all objects in sketch window 

Scale Selection... - scale selected object(s) 

Arrange menu: 

Group - group selected objects 

Ungroup - ungroup selected group object 

Make Opaque - makes the given object or group opaque 

Recognition menu: 

Transform... - transform widgets in sketch window to a Motif interface and 
place them in the Finished window 

New Guess - reinfer widgets related to selected object 

Storyboard menu: 

Copy Screen to Storyboard - copy screen in sketch window to storyboard 
window 

Paste Screen to Selected Storyboard Screen - copy screen in sketch window 
and paste it over the selected screen in the storyboard window 
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D.10.9.2    Storyboard Window Menu Items 

Edit menu: 

Undo - unimplemented 

Cut - delete selected screen and move to the copy buffer 

Copy - copy selected screen to copy buffer 

Paste - paste screen from copy buffer 

Clear - delete selected screen or arrow 

Clear Storyboard - delete all screens and arrows in storyboard window 

Search Annotations... - brings up a dialog box that allows a text string search of 
the annotations on all screens in the storyboard. 

Sketch menu: 

Copy Screen to Sketch - copy selected screen from storyboard window to 
sketch window. 



APPENDIX E 

SILK Rules 

This appendix contains the rules used by SILK for recognizing widgets from among 
the primitive components and previously recognized widgets sketched by the designer. 
The description of the recognition algorithm is given in Chapter 3, "Widget Recogni- 
tion". The actual rules used by SILK are LISP functions that may include if state- 
ments and iterators (e.g., doiist) over lists of objects that satisfy nearness, 
containment, or sequence relationships. Thus, there is no need to test the rest of the 
rule if no such relationship exists. These rules have been rewritten here for clarity to 
contain only and's, or's, and calls to simple functions that test for the existence of a 
property (e.g., contains-p). In addition, only the "test" parts of the rules are shown. 
The "then" parts simply return a certainty value and a function to add interactive 
behavior to the parts of the widget identified by the "test." These "then" parts are all of 
the same format as the one shown in Figure 3-20 on page 45. 

(and (contains-p container containee) 
(or (rectangle-p container) 

(circle-p container)) 
(text-p containee) 
(button-size-p container)) 

Figure E-l. Test for button rule which results in certainty value of 1. 
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(and (contains-p container containee) 
(rectangle-p container) 
(rectangle-p containee) 
(skinny-p container :vertical)) 

Figure E-2. Test for vertical scrollbar rule which results in certainty value of 1. 

(and (contains-p container containee) 
(rectangle-p container) 
(rectangle-p containee) 
(skinny-p container :horizontal)) 

Figure E-3. Test for horizontal scrollbar rule which results in certainty value of 1. 

(and (scroll-bar-p compl) 
(vertical-p compl) 
(rectangle-p comp2) 
(horizontal-left-p compl comp2) 
(near-p compl comp2) 
(close-height-p compl comp2)) 

Figure E-4. Test for new scrolling window rule with scrollbar on left which results in certainty 
value of 1. 

(and (scroll-bar-p compl) 
(horizontal-p compl) 
(rectangle-p comp2) 
(vertical-above-p compl comp2) 
(near-p compl comp2) 
(close-width-p compl comp2)) 

Figure E-5. Test for new scrolling window rule with scrollbar below which results in certainty 
value of 1. 
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(and (scroll-bar-p compl) 
(vertical-p compl) 
(scroll-win-p comp2) 
(null (has-v-scroll-bar-p comp2)) 
(horizontal-left-p compl comp2) 
(near-p compl comp2) 
(close-height-p compl comp2)) 

Figure E-6. Test for scrolling window rule with new scrollbar on left which results in certainty 
value of 1. 

(and (scroll-bar-p compl) 
(horizontal-p compl) 
(scroll-win-p comp2) 
(null (has-h-scroll-bar-p comp2)) 
(vertical-above-p compl comp2) 
(near-p compl comp2) 
(close-width-p compl comp2)) 

Figure E-7. Test for scrolling window rule with new scrollbar on bottom which results in 
certainty value of 1. 

(and (rectangle-p compl) 
(text-p comp2) 
(near-p compl comp2) 
(aligned-p compl comp2 :bottom) 
(horizontal-left-p compl comp2) 
(check-box-width-p compl)) 

Figure E-8. Test for check box rule which results in certainty value of 1. 
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(and (circle-p compl) 
(text-p comp2) 
(near-p compl comp2) ' 
(aligned-p compl comp2 :bottom) 
(horizontal-left-p compl comp2) 
(check-box-width-p compl)) 

Figure E-9. Alternative test for check box rule which results in certainty value of 0.8. 

(and (circle-p compl) 
(text-p comp2) 
(near-p compl comp2) 
(aligned-p compl comp2 :bottom) 
(horizontal-left-p compl comp2) 
(check-box-width-p compl)) 

Figure E-10. Test for radio button rule which results in certainty value of 1. 

(and (rectangle-p compl) 
(text-p comp2) 
(near-p compl comp2) 
(aligned-p compl comp2 :bottom) 
(horizontal-left-p compl comp2) 
(check-box-width-p compl)) 

Figure E-l 1. Alternative test for radio button rule which results in certainty value of 0.8. 
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(and (or (button-p component) 
(button-panel-p component)) 

(in-sequence-p component sequence)) 

Figure E-12. Test for button panel rule which results in certainty value of 1. 

(and (or (check-box-p component) 
(check-box-panel-p component)) 

(in-sequence-p component sequence)) 

Figure E-13. Test for check box panel rule which results in certainty value of 1. 

(and (or (radio-button-p component) 
(radio-button-panel-p component)) 

(in-sequence-p component sequence)) 

Figure E-14. Test for radio button panel rule which results in certainty value of 1. 

(or (and (menu-bar-p component) 
(in-sequence-p component sequence :horizontal)) 

(and (text-p component) 
(in-sequence-p component sequence :horizontal)) 
(upper-left-p (first sequence)))) 

Figure E-15. Test for menu bar rule which results in certainty value of 1. 
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(and (contains-p container containee) 
(or (rectangle-p container) 

(palette-p container)) 
(or (and (line-p containee) 

(close-size-p containee container 
:width)) 

(not (line-p containee)))) 

Figure E-16. Test for palette rule which results in certainty value of 1. 

(and (text-p compl) 
(rectangle-p comp2) 
(near-p compl comp2) 
(aligned-p compl comp2 :bottom) 
(horizontal-left-p compl comp2)) 

Figure E-17. Test for text field rule which results in certainty value of 1. 
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